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Fungal biology has an integral role to play in the development of the biotechnology 
and biomedical sectors. It has become a subject of increasing importance as new 
fungi and their associated biomolecules are identified. The interaction between 
fungi and their environment is central to many natural processes that occur in the 
biosphere. The hosts and habitats of these eukaryotic microorganisms are very 
diverse; fungi are present in every ecosystem on Earth. The fungal kingdom is 
equally diverse, consisting of seven different known phyla. Yet detailed knowledge 
is limited to relatively few species. The relationship between fungi and humans has 
been characterized by the juxtaposed viewpoints of fungi as infectious agents of 
much dread and their exploitation as highly versatile systems for a range of 
economically important biotechnological applications. Understanding the biology 
of different fungi in diverse ecosystems as well as their interactions with living and 
non-living is essential to underpin effective and innovative technological 
developments. This series will provide a detailed compendium of methods and 
information used to investigate different aspects of mycology, including fungal 
biology and biochemistry, genetics, phylogenetics, genomics, proteomics, molecular 
enzymology, and biotechnological applications in a manner that reflects the many 
recent developments of relevance to researchers and scientists investigating the 
Kingdom Fungi. Rapid screening techniques based on screening specific regions in 
the DNA of fungi have been used in species comparison and identification, and are 
now being extended across fungal phyla. The majorities of fungi are multicellular 
eukaryotic systems and therefore may be excellent model systems by which to 
answer fundamental biological questions. A greater understanding of the cell 
biology of these versatile eukaryotes will underpin efforts to engineer certain fungal 
species to provide novel cell factories for production of proteins for pharmaceutical 
applications. Renewed interest in all aspects of the biology and biotechnology of 
fungi may also enable the development of “one pot” microbial cell factories to meet 
consumer energy needs in the 21st century. To realize this potential and to truly 
understand the diversity and biology of these eukaryotes, continued development of 
scientific tools and techniques is essential. As a professional reference, this series 
will be very helpful to all people who work with fungi and should be useful both to 
academic institutions and research teams, as well as to teachers, and graduate and 
postgraduate students with its information on the continuous developments in 
fungal biology with the publication of each volume.
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1.1  Introduction

It has been proposed that global agriculture will have the challenge to produce dou-
bling food production by 2050 to feed the world (Ray et  al. 2013). As a conse-
quence, the use of soils in agronomic ecosystems will increase together with the use 
of agronomic inputs such as fertilizers and pesticides which would be changed from 
inorganic to organic formulation taking into account the sustainability of these sys-
tems and also the provision of food security (Berrutti et al. 2014; Ray et al. 2013). 
Thus, soil ecosystems and their health and quality are directly involved in sustain-
able agronomical practices and recognizing the important role of soil microbial 
communities (Lehman et al. 2015) and their biodiversity, interactions, dynamic, and 
functioning (De Vries and Wallenstein 2017). Soil ecosystems and their functioning 
are under the threat of biodiversity loss by the increase of cultivated areas and agro-
nomic exploitation intensity. Changes in land use alter the structure and functioning 
of ecosystems where biodiversity plays a vital role in the ecosystem services (ES) 
provision (Fedele et  al. 2018, Millennium Ecosystem Assessment-MA 2005). 
Further, some agronomic managements have positive or negative effects on soil 
health and microbial biodiversity (Lehman et al. 2015), affecting also the interac-
tion between different microbial communities including bacteria and fungi (Dodd 
and Ruiz-Lozano 2012) which are proposed as the key to soil sustainability (De 
Vries and Wallenstein 2017).

Soils are the support of food production in all terrestrial ecosystems including 
agronomic ones; they are therefore involved in gas emission and global warming 
effect. Thus, in agronomic ecosystems, several mitigation practices were proposed 
to promote the increase of carbon soil stock and the reduction of warming gas emis-
sion from soil (Paustian et al. 2016). One of these mitigation strategies proposed 
was the land-user engagement that requires lesser robust quantification and moni-
toring technologies than others, and also it is most closely related to farmers and 
their local knowledge as the stakeholders who will apply the new concepts and local 
knowledge in their agricultural practices (Paustian et  al. 2016). Currently, these 
mitigation proposals are in agreement with and reinforce the new concept of nature’s 
contributions to people (NCP) that has included a social point of view in the concept 
of ES popularized by the Millennium Ecosystem Assessment (MA 2005). Thus, 
NCP are positive or negative contributions of the living nature (biodiversity, ecosys-
tems, ecological and evolutionary processes) to the quality of life of people that take 
into account the stakeholders’ knowledge, especially of local communities, and 
among them of indigenous people, to define the linkage between humans and nature 
(Díaz et al. 2018).

In Latin America and the Caribbean, it is estimated that 50% of the people living 
in rural areas continue to live in poverty and about 30% in extreme poverty. In this 
region, most of the rural population depends economically on agriculture (crops, 
animals, forests, fisheries, and aquaculture) and usually works in family units. 
Therefore, family farming occupies a fundamental role in the economy and rural 
employment, contributing also to the food and nutritional security of the countries 
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and their territorial development and regional efforts to avoid hunger. However, 
family farming still faces multiple limitations because the family agriculture 
together with territorial rural development, food security, nutrition, and eradication 
of hunger is the priority initiative of FAO in Latin America and the Caribbean, to 
support countries to achieve eradication of hunger, rural poverty reduction, and sus-
tainable development (FAO http://www.fao.org/family- farming/regions/latinamer-
ica/es/). Furthermore, it is predicted that two thirds of cultivable land may disappear 
in Africa, a third in Asia, and one fifth in South America by 2025 and that arable 
land area per inhabitant in the world will be reduced to 0.15 ha in 2050 (Gianinazzi 
et al. 2010), and diverse ecoregions in South America also were considered as vul-
nerable by its degree of conservation since 2002 (Olson and Dinerstein 2002).

Plants and soils are increasingly appreciated along the different terrestrial eco-
systems as they support several ecosystem services for high-quality human life. 
Anthropogenic activities introduce fertilizers and pesticides in the fields, modifying 
the biota in the different ecosystems from South America. Moreover, soil microor-
ganisms are considered a potentially suitable target for studying regional and local 
effects on diversity, and AMF communities have been modified and are still shaped 
by anthropogenic factors in the past and now (Pärtel et al. 2017).

Land uses are the most extent of these human interventions on fungal communi-
ties including mycorrhizal fungi. Arbuscular mycorrhizal fungi (AMF) are a key 
soil biota functional group with an important potential to contribute to crop produc-
tivity and implement new strategies for sustainable production by the ES they may 
provide such as the promotion of plant growth by avoiding the use of fertilizers, the 
increase in crop quality and food security, the increase in plant/soil adhesion, and 
the structural stability of the soils (Gianinazzi et al. 2010). The different land uses 
affect the AMF diversity and their function in the community, some AMF species 
may be used as environmental indicators of different land uses (Oehl et al. 2017), 
and organic farming has beneficial effects on AMF community (Oehl et al. 2004). 
Despite the significant relationship between AMF diversity, land uses, and its ES, 
there are very few studies focused in ES of AMF in Latin America. These topics are 
detailed in Sects. 1.2, 1.5, 1.6, and 1.7 in this chapter.

Worldwide ectomycorrhizal (EcMF) and saprotrophic fungi richness suffered 
the land use type effects, and forest ecosystems had greater fungal richness than 
grassland, pasture, and agricultural lands and markedly greater richness for ectomy-
corrhizal than saprotrophic mushroom-forming fungi. Ectomycorrhizal fungal rich-
ness differed from that of saprotrophs by being positively associated with tree 
species richness (Andrew et al. 2019). In European oak woodlands with cork oak 
(Quercus suber L.) as dominant tree, EcMF richness and abundance were positively 
correlated with the regime of silvo-pastoral exploitation and low-mortality Q. suber, 
with extensive agro-silvo-pastoral exploitation under a traditional 9-year rotation 
cultivation system and recent soil tillage, respectively (Azul et al. 2010). Furthermore, 
Pérez-Moreno and Martínez-Reyes (2014) showed that among the 1018 species of 
edible macroscopic fungi, 488 species were ectomycorrhizal symbionts belonging 
to Amanita, Boletus, Cantharellus, Cortinarius, Hygrophorus, Lactarius, Leccinum, 
Ramaria, Russula, Suillus, and Tricholoma genera. Currently, Pérez-Moreno et al. 
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(2021) have recorded 970 EcMF edible species of mushrooms and truffles. Due to 
EcMF production of macroscopic esporoma (mushroom or truffle) is related with 
the presence of tree hosts and its functional and physiological conditions, and taken 
together the richness and abundance of EcMF basidioma and ascoma production are 
also influenced by the agroforest management and the edible EcMF productivity in 
natural and managed forest. Therefore, mushroom and truffle production can also 
be influenced by changes in land use and forest ecosystem modifications. That is 
why it is necessary to intensify the study of edible EcMF in these ecosystems to 
increase their sustainability. In this book these issues in South America are detailed 
(Chap. 12, Salgado Salomón and Barroetaveña; Chap. 16, Palfner et al.; and Sect. 
1.3 in this chapter).

Orchidaceae are the second largest flowering plant family with ca. 26,000–28,000 
(30,000) species worldwide, living as epiphytic, lithophytic, and terrestrial and 
mainly distributed in the tropical areas (Angiosperm Phylogenetic Group; http://
www.mobot.org/MOBOT/research/APweb/; The Plant List: http://www.the-
plantlist.org/1.1/browse/A/Orchidaceae/). In America, Orchidaceae is also the most 
diverse family, with 12,983 species, followed by Asteraceae and Fabaceae. In South 
America, epiphytic Orchidaceae is the most diverse family represented in the floras 
of tropical Andean countries such as Ecuador, Colombia, Perú, Venezuela, and 
Bolivia and also in Central America and the Guianas and is the second most diverse 
family in Brazil and Argentina (Ulloa et al. 2017). Orchids are associated forming 
orchid mycorrhiza (OM) with diverse orchid mycorrhizal fungi (OMF) including 
Basidiomycota, Ascomycota, Chytridiomycota, Glomeromycota, and 
Mucoromycota. The most common OMF belongs to Basidiomycota (i.e., 
Rhizoctonia spp., Tulasnellaceae, Ceratobasidiaceae, Serendipitaceae, 
Thelephoraceae) and Ascomycota (i.e., Tuber). Surprisingly, the ecological niches 
range of the OMF is very wide and can fluctuate from saprotrophic up to endophytic 
in non-orchid plants and/or has mixing nutritional types in some cases among other 
fungal endophytic groups as dark septate endophytes included melanized hyphal 
Helotiales (Li et  al. 2021 and reference therein). Furthermore, this family is an 
emblematic group for the protection of endangered plants with 948 species included 
in the Global Red List of IUNP, and 56.5% of them are reported to be threatened. 
Moreover, orchids have a great and diverse business prospects such as cut flower, 
ornamental plants, medicinal compounds, and food (De 2020). In this book, tropical 
Orchidaceae, OM and OMF, their sustainable culture, and orchid used in human 
diet are revised (Chap. 8, Alomía and Otero), and terrestrial Argentine orchids and 
their mycorrhiza conservation are presented in Chap. 9 by Fracchia and Sede (see 
also Sect. 1.4 in this chapter).

In this chapter we show the occurrence of important plant species from South 
America with their mycorrhizal associations. Specifically, we focused on the 
grasses, herbs, vines, and trees with economic importance for the different regions 
of South America and their association with different types of mycorrhizal fungi 
(arbuscular, AMF; ecto, EcMF; and orchid, OMF).

M. A. Lugo and M. C. Pagano
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1.2  Arbuscular Mycorrhizal Fungi Diversity 
and Food Production

1.2.1  Grasslands

The vegetation type with prevalence of grasses (Poaceae) and other grass-like veg-
etation, which occurs naturally or is managed (for cutting or cattle-grazing) (Stevens 
2018) presents great ecological, economic, and social value but continues to receive 
limited scientific attention. The microbiota associated to grassland vegetation was 
also few investigated. Among the microbiota, the arbuscular mycorrhizal fungi rep-
resent important components interconnecting soil and plant through the hyphal net-
works, spores, and secreted substances such as glomalin.

Several reports showed that pasture species were highly mycorrhizal dependent. 
Moreover, spore density can be low in intensively managed pastures, but fungal 
richness can be high in semi-natural pastures, compared to native forests, which are 
usually used as a reference of pristine ecosystem. We compile reports from different 
sites and countries and analyze them.

A total of 42 AMF species were recovered from seminatural subtropical pastures 
(Melo et al. 2014). However, only two species were shared between subtropical and 
tropical pastures, Notably, Scutellospora calospora was a common species in both 
pastures. In general, other species are frequently found preferentially in native for-
ests such as Acaulospora spinosa, Ambispora brasiliensis, Dentiscutata heterogama 
(Lopes Leal et al. 2013), and Acaulospora lacunosa (Melo et al. 2014).

1.2.2  Pasture

1.2.2.1  Intensively Managed Pastures

Under intensively managed pastures in Terceira, Azores, members of 
Claroideoglomeraceae (a group of AMF with small spores) dominated the soils 
(Melo et al. 2014). Pastures are obtaining increasing importance worldwide due to 
the need of sustainable management for increasing or maintaining their productiv-
ity. There is much interest to improve grassland resilience, pasture persistence, and 
productivity under environmental limitations and changes (Porqueddu et al. 2016).

In Chap. 17 García and Chippano (in this book) reviewed the potential and 
proved the effects of AMF on sustainability and productivity of the pasture in flood-
ing areas in Argentina (see also Sect. 1.2.2.3 in this chapter).

In addition, the economic activities related to extensive livestock production 
based on the grazing of native vegetation were studied in relation to the high level 
of desertification processes caused by livestock on the ecosystem extent along 
Argentine Arid Diagonal (AAD) from the north of Argentina to Patagonian Atlantic 
coasts. In these environments, AMF (Glomeromycota) have been shown an 
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important ecological role in these poorly fertile environments and are involved in 
the establishment, assembly, and succession of plant species. In these natural grass-
lands used for livestock purposes if grazing was moderate, mycorrhizal colonization 
is beneficial to recover photosynthetic tissue loss and to promote compensatory 
growth of grass species in arid and semiarid environments; grazing has effects on 
diversity and functional traits of AMF. Furthermore, mycorrhizal colonization has a 
fundamental role in grassland sustainable productivity depending onto the manage-
ment practices and ecophysiological characteristics of plant species of these grass-
lands. Ambrosino et al. (Chap. 19 in this book) have proposed in AAD grasslands 
that the use of forage resources must be carried out with caution to conserve the 
attributes and functional traits of Glomeromycota communities and ecosystem 
services.

1.2.2.2  Tropical Pastures

Brazil
Pastures grazed by domesticated livestock and products from cows on farms are 
crucial for milk and cheese production. Permanent tropical pastures of Brachiaria 
sp. are commonly established to maintain pasture lands in Brazil which also con-
tained similar AMF and shared frequent species, such as Claroideoglomus etunica-
tum, Funneliformis geosporus, Scutellospora calospora, Acaulospora mellea, and 
Dentiscutata heterogama (Pagano et al. 2019).

Exclusive AMF species are generally found in different plant communities such 
as in pastures of Amazonia and Brazil or under forest (Table 1.1). Most of the spe-
cies include Acaulosporaceae (Acaulospora) and Glomeraceae (Glomus and 
Rhizophagus), Gigaspora, Diversispora, and Scutellospora. Species richness of 
Acaulosporaceae was higher in pasture compared to forest, while species of 
Glomeraceae and Gigasporaceae were in higher number in forest (Pagano 
et al. 2019).

Table 1.1 Some grasses and AMF species from Brazil

AMF species
Vegetation 
type Reference

Funneliformis geosporus Grassland Porqueddu et al. (2016)
Glomus macrocarpum Forest Pagano et al. (2019)
Claroideoglomus etunicatum Forest; pasture Pagano et al. (2019)
Acaulospora spinosa; Scu. 
scutata

Native forest Crossay et al. (2020); Porqueddu et al. 
(2016)

Dentiscutata heterogama Native forest Porqueddu et al. (2016)
Glomus sp.1 Native forest Lopes Leal et al. (2013); Porqueddu et al. 

(2016)
Claroideoglomus etunicatum Forest; pasture Pagano et al. (2019)

M. A. Lugo and M. C. Pagano
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Furthermore, Salloum et  al. (2022) showed the variability in colonization of 
arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved 
for tolerance vs unimproved soybean cultivars in a pot experiment.

Microbial inoculants or biofertilizers in sustainable food production benefit 
plants by efficiently consuming mineral elements such as nitrogen and phosphorus. 
Arbuscular mycorrhizal (AM) associations assist several plants to obtain sufficient 
supplies of phosphorus from rhizospheric soils (Igiehon et al. 2017).

1.2.2.3  Temperate Pastures

Argentina
Grasslands are the sources of many agronomic productions, livestock systems, and 
environmental issues with positive and recognized impacts on water quality and 
biodiversity. In this book García and Chippano (see Chap. 17 in this book) discuss 
the ecological role of AM symbiosis on the functioning of temperate grasslands of 
Argentina as valuable information to promote better management of forage land 
sustainably, increasing forage. These authors have been focused in the production 
and preservation of the beneficial effects of AMF communities in these Argentine 
Flooding Pampa ecosystems, under effects mainly of grazing and defoliation and P 
fertilization on mycorrhizal root colonization and AM benefits on forage species of 
these grasslands. In flooding Pampa, AMF were one of the most common root- 
associated soil biota, and they have influenced plant productivity. Thus, AMF have 
shown a high value for the functioning and sustainability of these flooding grass-
lands; AMF communities also were influenced by soil characteristics, plant species 
diversity, and climate factors as have been recorded in other temperate grassland 
ecosystems of South America. Moreover, the uses of these environments for raising 
livestock to increase the forage resource are agronomic practices which modify not 
only the plant communities but also the AMF communities and consequently the 
benefits provided by AMF on grassland productivity. García and Chippano (Chap. 
17) also found that phosphorus (P) fertilization was necessary to obtain maximum 
forage yield in these flooding grasslands despite the fact that this procedure had a 
detrimental effect on AMF root colonization and mycorrhizal response in several 
plant species, even if AMF could actively be contributing to plant P uptake.

Chile
Along Chap. 20, Yates et al. (in this book) highlight the ecological relevance of AM 
symbiosis promoting nutrient and water acquisition, favoring plant defenses to cope 
with pests or adverse conditions such as drought, salinity, and presence of toxic ele-
ments, with multiple ecological meanings and the possible biotechnological appli-
cations in Chile. Yates et al. have systematized the scientific information regarding 
AM and AMF in Chile by macrozones and found also the information gaps to direct 
future studies in this symbiosis. In total, 53% publications of AM symbiosis in 
Chile studied anthropogenic ecosystems and how to resolve troubles from mining 
and agriculture, 42% were focused on functional properties and taxonomy of AMF 
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in natural ecosystems, and natural and anthropic issues together were analyzed in 
5% of papers. Notorious information gaps were revealed through analysis by geo-
graphical zones, showing the main AM and AMF data availability in the south por-
tion of Chile. In addition, the predominant studies were focused in agroecosystems, 
mainly monocultures, and also human-impacted environments. These authors con-
cluded that it is crucial and relevant to study AM and AMF in the generation of 
sustainable agri-food systems adapted to coexist with natural ecosystems and the 
current climate emergency, to contribute with the restoration of degraded natural 
ecosystems, particularly in the extreme north and south of Chile.

1.2.3  Vineyards

In South America, vine crops extend over an area of 215,000  ha in Argentina, 
207,000 ha in Chile, and 80,000 ha in Brazil (Chap. 18 Aguilera et al. in this book). 
The vineyards are of great economic importance in Argentina (10.8 million hL) and 
Chile (10.3 million hL), countries that are mainly world wine-producing (Aguilera 
et al. 2022). As sustainable wine production is increasing worldwide (Abbona et al. 
2007), it was evaluated the sustainability of traditional management in different 
vineyard systems in Berisso, Buenos Aires province, Argentina. Abbona et  al. 
(2007) compared the conventional management to organic; however, they do not 
evaluated the mycorrhizal associations in that fields, which would be useful to 
increase the information about this important economic crop.

Aguilera et al. (Chap. 18 in this book) have studied grapevines (Vitis vinifera L.) 
and viticulture in Chile in relation to water scarcity in the frame of climate change 
to 2050 and the prediction of drought increase accompanied by increases in tem-
perature, along with different edaphoclimatic Chilean conditions. Surprisingly, they 
found wine production moving toward the south of Chile, with higher winter and 
spring precipitations but lower temperatures. Further, in this country viticulture is 
facing a new constraint such as the production on Andosols, very acidic, P fixing 
and aluminum (Al) toxicity. These prevailing conditions have been a challenge for 
wine producers, universities, research centers, and the scientific community and 
also promoted the joint work of these social actors to understand the ecosystem 
services that could be improved based on microorganisms like AMF as biostimu-
lants, to involve them into bioformulations based in scientific technological devel-
opments to applied new inoculant consortia formed by different growth-promoting 
microorganisms with special emphasis onto high-tech agriculture acquisition of 
AMF-based biostimulants produced by research groups.
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1.2.4  Agroforestry and Food Production

According to FAO’s latest 26th UN Climate Change Conference of the Parties 
(COP26) and Global Forest Resources Assessment, “agricultural expansion drives 
almost 90% of global deforestation.” Thus, agriculture is the main driver of defor-
estation in all world regions less Europe. In South America, ca. three quarters of 
deforestation is due to livestock grazing. This committee of specialists involved in 
FAO report has emphasized to promote agri-food productivity to provide the new 
food demands of increasing human population and to cut off deforestation due to 
the fact that the global deforestation is warning tropical rainforests that are under 
high pressure from agricultural expansion. Tropical forests still are under threat 
despite a slowdown in deforestation in South America and Asia; the rainforests in 
these regions have the highest deforestation rates (FAO, https://www.fao.org/news-
room/detail/cop26- agricultural- expansion- drives- almost- 90- percent- of- global- 
deforestation/en). In these tropical environments, mycorrhizal associations such as 
AM, ECM, OM and ericoid mycorrhizas (ErM) predominate associated with vari-
ous plant species, as they can coexist in the same host or differ between them (Smith 
and Read 2018). In addition, deforestation brings with it soil erosion and increased 
aridity in the region; these environmental conditions are also accompanied by 
changes in the mycorrhizal symbioses that will be established and will produce 
changes in the biodiversity of these modified ecosystems.

Therefore, to know what these mycorrhizal associations are, the plant and fungal 
symbionts involved, what is the functionality of the symbiosis, and the effects of 
environmental changes on the partners are essential information for the sustainable 
use of these forests as sources of food and medicines, carbon reservoir, harmonizers 
of the water cycle, and for the recreation for the world population.

In Argentina, Dr. Marta Cabello continues the studies of Ilex paraguariensis, 
known as yerba mate, a native species from South America (Velázquez et al. 2020). 
They also showed the improved AMF colonization in organic trees growing sponta-
neously in the undergrowth of the forest, compared to the conventional management 
of the exploited crop.

Mycorrhizal associations in South American tropical environments, including 
the Amazon region, were analyzed along this topic researcher history (see Chap. 4 
Peña Venegas et  al.) where 1200 samples were collected during the last decade. 
Arbuscular mycorrhizal fungal diversity and richness trends across the Colombian 
Amazon are reported, including their relationship with deforestation activities. AM 
association with two important Euphorbiaceae plants, such as the manioc (Manihot 
esculenta) and the rubber tree (Hevea brasiliensis), is also mentioned, due to their 
relevance for the local economy. Molecular and phylogenetic results are also very 
important contributions to the knowledge of the AM symbioses and its functions in 
this wide area of the Amazon such as the upper Amazon basin.

In the tropical South America, coffee and cacao are among the most widespread 
and economically important agroforestry crops, traditionally cultivated under a 
canopy of shade trees that is considered a model of sustainable agriculture prone to 
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favor the biodiversity conservation and forest ecosystem services (Chap. 5 Lovera 
et  al., in this book). Lovera et  al. studied AMF in these coffee and cacao crops, 
showing that AMF have an important role in plant nutrition, nutrient cycling, and 
the sustainable maintenance of these agroforestry ecosystems. Further, these authors 
report the increases of plant survival under biotic and abiotic stress conditions by 
means of their mycorrhizal associations that were a fundamental factor to improve 
coffee and cacao productivity. AMF species associated with coffee and cacao culti-
vation in South America were reported by Lovera et al. (Chap. 5); thus, the AMF 
taxa more commonly associated to coffee crops were Rhizophagus clarus, Gigaspora 
margarita, and Claroideoglomus etunicatum (to improve the coffee grain yield); 
R. clarus, C. etunicatum, and Diversispora heterogama (higher resistance to drought 
stress); and G. margarita, Dentiscutata heterogama, Ambispora leptoticha, 
Funneliformis mosseae, R. clarus, R. fasciculatus, R. intraradices, R. irregularis, 
R. manihotis, C. etunicatum, Glomus macrocarpum, Acaulospora scrobiculata, 
A. colombiana, A. laevis, and A. mellea (increase coffee plant growth); instead, with 
cacao were recorded the following species: G. margarita, Scutellospora calospora, 
Cetraspora pellucida, Ambispora appendicula, F. mosseae, R. clarus, R. irregula-
ris, Septoglomus constrictum, and A. tuberculata (positive response on the growth 
and/or mineral nutrition). Moreover, A. tuberculata, A. scrobiculata, A. mellea, and 
C. etunicatum have been proposed as putative inoculant species due to their positive 
effects on the growth of coffee and cacao hosts, generalistic habit, and their adapt-
ability to different edaphic and environmental conditions (Lovera et al. Chap. 5). 
Therefore, coffee and cacao agroforestry management is able to maintain function-
ally diverse AMF communities with multiple benefits of mycorrhizal association. 
Nevertheless, the increase of the intensity of agriculture practices reduced signifi-
cantly AMF diversity to change AMF functionality.

1.3  Ectomycorrhizal Fungi Diversity and Food Production

1.3.1  EcMF in Native and Exotic Forest

Mycorrhizas and their fungal partners are one of the most important and ecologi-
cally crucial symbiosis for boreal, temperate, subtropical, and tropical forest, driv-
ing plant population biology and community ecology shaping their dispersal and 
establishment, regulating plant coexistence (Tedersoo et al. 2014, 2020). In South 
America, among a theoretical framework based on 2–7% of world scientific publi-
cations, AM associations have been proposed as prevailing along a wide range of 
these continental biomes under a biogeographic approach (Brundrett and Tedersoo 
2018), with less percentage of other types of mycorrhizas. However, EcM symbio-
sis, OM, and ErM together with dark septate endophyte presence and importance 
have been revealed by means and exhausting revision from South America scientific 
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data, but also information gaps have been found (Pagano and Lugo 2019 and refer-
ence therein), and new ones are shown in this book (see Chap. 22, Marín et al.).

Dipterocarpaceae is an important tree family that forms EcM symbiosis in the 
Paleotropics. Pseudomonotes tropenbosii, a Neotropical species found in the 
Colombian Amazonia, was recorded forming EcM (Vasco Palacios and Boekhout, 
Chap. 3 in this book) with 90 species of EcMF from aboveground/sporocarps (81 
spp.) and belowground/root-tip samples (23 spp.). The EcMF community was dom-
inated by the genera Clavulina (13 spp.), Russula (9 spp.), and Craterellus, Coltricia, 
and Amanita (6  spp. each). Differences in the diversity and richness of species 
across sites studied have suggested that environmental differences among sites are 
important in structuring the EcM fungal communities. The 50% of EcMF species 
symbionts of P. tropenbosii coexisted with other tree species of Fabaceae and 
Cistaceae that grow in remote Neotropical lowland rainforests. Another surprising 
result was the high diversity of Clavulina (12 spp.); nine of them were previously 
found associated to Fabaceae-dominant forests in Guyana, showing a broad host 
diversity and widespread distribution of these EcMF. Moreover, Vasco Palacios and 
Boekhout (Chap. 3 in this book) suggested that the EcM status of P. tropenbosii 
could indicate the mutualistic relationship of EcMF taxa with a Gondwana ancestor 
of the Dipterocarpaceae already existed, despite it has been proposed the boreo-
tropical migration or transatlantic dispersal of this EcM tree family.

Forest fragmentation, clear cutting, fires, grazing, and partial conversion to 
exotic plantations are affecting the temperate forests of southern South America at 
an increasing rate. It is estimated that about 50% of the native Patagonian forest is 
degraded by anthropic actions that also impact on mycorrhizal associations and the 
ways to implement mitigation measures. Salgado Salomón and Barroetaveña (Chap. 
12 in this book) have proposed, based on the research of native and exotic Patagonian 
forest, that the autecology and biodiversity of mycorrhizas in these ecosystems need 
further and urgent studies. Salgado Salomón and Barroetaveña also highlight the 
recently reported declines of the relictual Araucaria araucana and the endemic 
N. dombeyi and how it could affect other forest species. The effects of fire and graz-
ing on Patagonian forest have been analyzed together with their effects on edible 
mushroom productivity; furthermore, ectomycorrhizal species suitable for nursery 
inoculation and good field performance have been studied for exotic P. ponderosa 
planted in Patagonia, and these authors considered also inoculations with expensive 
edible EcM species such as L. obliqua with Tuber melanosporum Vittad (the 
Périgord black truffle) under greenhouse conditions, which allows the possibility of 
culturing this truffle as a secondary crop during reforestation. In this chapter it is 
further addressed the trufficulture in Patagonia using different species of oaks 
(Quercus robur L., Q. ilex L.) inoculated with Tuber melanosporum and T. aestivum 
Vittad in less proportion that have been established in suitable microsites along the 
region. However, these culture practices involved the introduction of exotic taxa 
into native forest lands, and more studies are necessary to evaluate its proper 
implementation.

In the sub-Antarctic temperate forests from Argentina and Chile, Nothofagus 
species are the dominant trees (Chap. 14 Fernández et al. in this book). They are 
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usually colonized by abundant and diverse ectomycorrhizas. Due to the consider-
able ecological and economic importance of Nothofagus and its ectomycorrhizas, 
Fernández et al. have overviewed field, natural, or managed forest and greenhouse 
bioassays along different experimental researches used to characterize the ectomy-
corrhizal symbiosis in different South American Nothofagus species since how 
nursery approaches have been addressed the Nothofagus seedlings-EcM relation-
ship during domestication programs, the studies of plant physiological traits, to eco-
system processes involved Nothofagus-EcMF symbiosis. These authors highlight 
some aspects that should be worth considering in the near future such as to consider, 
in management and sustainable forestry of Nothofagus due to the diverse biotic and 
abiotic factors influencing EcM formation and EcMF diversity, the importance of 
carrying out field studies together with nursery trials under controlled conditions for 
providing information to be applied as biotechnological tools on Nothofagus-EcMF 
associations. In this chapter were detected many gaps that need to be studied like the 
effects of high-magnitude disturbances on sub-Antarctic temperate forests, 
Nothofagus-EcMF symbiosis, and larger geographic and temporal scales to eluci-
date common ecological and biogeographical patterns and to identify how various 
factors associated with global change could influence the distribution of EcMF and 
their host plants to project management plans, mitigation strategies, restoration pro-
grams of degraded environments, assistance to forestry species migration, and 
improvement of sustainable forestry production programs.

Recently, edible ectomycorrhizal fungi that are forming mushrooms (EEMF) 
were globally reviewed (Pérez-Moreno et al. 2021), resulting in 970 species among 
Basidiomycota (mushrooms in general sense) and Ascomycota (truffles), and it has 
been shown their huge values as subsistence source in local and global scale but also 
as an international food business. These authors showed three main areas in the 
America where the EEMF are a food resources, and South America is one of them. 
Although South America has a great diversity of EEMF, the information of uses of 
edible EcMF and fungi in general as food is scarce or completely missing, probably 
due to the cultural loss of original people traditions by the presence on the continent 
of European conquerors who greatly discouraged and destroyed the traditional 
native cultures.

In this book, Palfner et al. (Chap. 16) have analyzed the EEMF. Thus, they found 
EEMF have a heterogeneous distribution in South America, occurring mainly asso-
ciated with native and exotic tree species in the temperate forest ecosystems in 
southern South America, in the Andean-Patagonian region, along natural and timber 
monocultures forests, considering also truffle culture progresses. EEMF diversity, 
their cultural and economic relevance, nutritional properties, cultivation, sustain-
able management and conservation. In Chile, the conservation status of native 
EEMF Boletus loyo is classified as endangered, and Cortinarius lebre has been 
assessed as vulnerable (MMA 2022) and Amanita rubescens as an exotic EEMF 
which were originally introduced in timber tree monoculture but changed to native 
hosts. Furthermore, it has been proposed a phytosociological classification of 
Chilean ecosystems (Pliscoff 2015) following standards of the IUCN (International 
Union for Conservation of Nature). Moreover, governmental, and scientific 
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institutions, and non-governmental organizations (NGO) have elaborated sustain-
able harvesting protocols and recommendations (Salazar Vidal 2016; Palma 
et al. 2021).

Besides, globally biological invasions are an ecological, economic, and human 
health problem. In plant invasions, belowground biotic interactions such as mycor-
rhizal associations represent “the hidden side” of this problem that has been over-
lapped by the most visible components of these symbioses, the hosts, but nevertheless 
these symbiotic interactions are fundamental and decisive to define and determine 
the invasion success or failure of their plant partners. Policelli et al. (Chap. 2, in this 
book) explore some of the ecological aspects of EcMF that settle their invasion suc-
cess with species of the Pinaceae in southern South America. Policelli et al., mean-
while a “myco-centric framework of the invasion process,” address the spatial and 
temporal zonation of EcMF succession in the non-native plant range. They found 
that different EcMF species are associated with the different stages of tree invasions 
and that this is key to understanding the co-invasion process. Along Chap. 2, the 
authors discuss this problematic issue and propose the way forward, emphasizing 
also how plant mycorrhizal invasions in South America are an ideal system to 
explore problems that combine mycorrhizal ecology and invasion biology. Thus, 
Policelli et al. expose this “hidden side” of plant invasions, exposing and highlight-
ing the relevance of fungal symbionts and symbioses for the study and understand-
ing of biological that may be explained in part by the ecological traits of their 
specific belowground symbionts.

1.4  Orchid Mycorrhizal Fungi

Recently, the scarce information on mycorrhizas established with orchid and erica-
ceous hosts and their associated mycorrhizal fungi and in South America has been 
shown (Pagano and Lugo 2019; Lugo and Menoyo 2019). Regarding to orchid fam-
ily, along Chap. 8 (in this book), Alomía and Otero have reviewed the orchid mycor-
rhizas in tropical South America, showing that despite the tropical ecosystems are 
undoubtedly the cradle of orchid diversity, still few aspects of the biology of this 
diverse plant group have been explored in the region. Orchidaceae species establish 
mycorrhizal associations with fungi that supply them with nutrients in the early 
stages of development to stimulate the germination of their tiny seeds, but also adult 
photosynthetic orchids could be associated with fungi, and they may change along 
the host life with different successional fungal symbionts along the time (Li et al. 
2021 and reference therein). These fungi are called orchid mycorrhizal fungi 
(OMF), and their interaction with orchids is called orchid mycorrhiza (OM) (see 
also Sect. 1.1). Alomía and Otero (op. cit.) found that ca. 50% of research publica-
tions are focused on determining the diversity of OMF associated with a few orchid 
species of interest; the rest of the main topics recorded are studies of phylogeny, 
morphological and symbiotic seed germination, ultrastructure, and community 
ecology; however, evolution of OM, mutualistic networks, and metabolism of the 
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interaction are the least explored aspects of this symbiosis. Alomía and Otero pro-
pose in conclusion to encourage international scientific collaborations to address the 
most complex issues still unresolved such as the role of OM in the evolutionary 
success of tropical orchids. On the other hand, these authors invite researchers to 
carry out scientific labor that results attractive to the general public and orchid 
growers (e.g.) and “not only in the academic community to develop the enormous 
potential of Orchidaceae and OM in the region.”

In addition, the symbiotic propagation of South American native orchids and 
their conservation was addressed in Chap. 9 (Fracchia and Sede, in this book). 
Fracchia and Sede (Chap. 9) pointed out the life cycle of orchids is unique in the 
plant kingdom, due to the fact that their seeds germinate only when they are associ-
ated in nature with compatible fungi. This first contact and association orchid- 
fungus is crucial for the development of new seedlings and the population dynamics 
in orchid’s habitats. South America ecosystems harbor more than 30% of the world 
biodiversity of Orchidaceae, and the greatest species richness occurred along the 
tropical Andean slopes. Currently, the continuous process of deforestation occurred 
along South America, even more in tropical forest but also in other South American 
ecosystems (i.e., arid regions, highlands, dry forest); thus, numerous species are 
under threat of extinction in the short term. In this context, to study and understand 
this fungal-orchid association and its propagation is essential to advance in conser-
vation programs by means of the generation of protocols to in situ and ex situ cul-
ture and propagation of orchid and fungal symbionts, with the focus on rare or 
endangered species. In Chap. 9 were also reviewed studies on this symbiosis, 
Orchidaceae species that have been successfully propagated by symbiotic methods, 
and the proposal of next research and practical actions that should be taken to pro-
mote the endangered orchids and their symbiotic fungi conservation.

1.5  Mycorrhizal Fungi and Land Use Change

Soil is one of the main reservoirs of biodiversity on earth due to its physical, chemi-
cal, and microclimatic heterogeneity; in particular, it harbors a great diversity of 
microbial communities (Guerra et al. 2021). Changes in land uses for crop produc-
tion, mainly those that involve intense agricultural management, threaten soil diver-
sity, compromising global ecosystem functioning and services (Wagg et al. 2014; 
Tibbett et al. 2020). Cofré et al. (Chap. 10, in this book) overview the effect of two 
no-till agricultural practices (crop rotation vs soybean monocropping) on AMF 
communities of five geographical locations of east-central Argentina. Along these 
cropping systems, 59 AMF morphospecies were recorded in these 5 geographical 
locations, and crop rotation- managed soils were the richest in AMF species and 
density of spores; instead the evenness was the lowest compared to the other crop-
ping systems. Crop rotation management was also related to Glomerales as indica-
tor taxa, such as Funneliformis mosseae and Glomus sp.4. morphospecies. 
Otherwise, Acaulosporaceae and Diversisporales were the indicator taxa for 
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monocropping practices. Furthermore, in the studied sites of central Argentina, the 
soil variables influenced the relative abundance of AMF according to taxonomic 
categories of family and order. Furthermore, soil physiochemical features like per-
centage of organic carbon and nitrogen differed between crop rotation and mono-
cropping, positively or negatively depending on the management type. Thus, AMF 
communities and chemical properties differed among no-till agricultural practices, 
and crop rotation showed to promote greater richness of AMF morphospecies.

Also in central Argentina, Ontivero and Lugo (Chap. 15, in this book) have stud-
ied the AMF diversity but along a more arid ecoregion, the Espinal, that includes 
three different vegetation areas named Algarrobo, Ñandubay, and Caldén Districts. 
The Espinal has suffered a significant loss of natural vegetation due to the land use 
changes, with the expansion of the agricultural frontier and deforestation. Scarce 
scientific publications from this ecoregion have been recorded. Along the Espinal 
AMF morphospecies were recorded; the greatest AMF morphospecies richness was 
registered in the Ñandubay District followed by the Caldén District, and 16 spp. 
were shared between them; in the Algarrobo District, there were not found publica-
tions of AMF morphospecies, but one publication recorded the virtual taxa analyzed 
by molecular methods (García de León et al. 2018). The AMF communities differed 
between Ñandubay and Caldén in their species composition; furthermore, agricul-
tural activities seem to have a negative effect on the diversity of AMF species in the 
Algarrobo District. Therefore, in this region the basic information about AMF 
diversity is lacking. It is necessary to carry out more research work in this issue, 
because knowing the biodiversity and structure of the AMF communities could pro-
vide useful information to develop management and reforestation plans to solve the 
drastic loss of biodiversity caused by land use changes.

1.6  Mycorrhizal Fungi in South American Degraded Lands

1.6.1  Potential of Mycorrhizal Fungi for Remediation 
and Restoration in Degraded Soils

1.6.1.1  Petroleum Hydrocarbon Contamination

Soils and other ecosystems are under serious damage conditions due to petroleum 
hydrocarbon contamination; that is one of the most common environmental prob-
lems causing frequent spill events. Nowadays phytoremediation techniques are 
applied for the decontamination of soils impacted by hydrocarbon pollution, among 
them an important place is occupied by the use of plants with their bioremediation 
capabilities enhanced by their associated mutualistic microorganisms such as AMF 
and their symbiotic associations, the AM (Cabello 1997). Rosas et al. (Chap. 6 in 
this book) have studied the impact of a hydrocarbon spill on Aristida setifolia, a 
dominant grass species in the Savanna. Rosas et al. analyzed rhizospheric samples 
of A. setifolia from contaminated vs uncontaminated soils and quantified AMF 
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spore abundance, mycorrhizal colonization, hyphal length, and glomalin production 
as glomalin-related soil proteins (GRSP). In polluted soils Rosas et al. (Chap. 6) 
have observed changes in soil physicochemical features such as increases in the 
electrical conductivity and the nitrogen percentage. Instead, the effects of hydrocar-
bon pollution on AMF diversity were negative; however, total glomalin (GRSP) 
amount was higher in contaminated soils, suggesting that the production of GRSP 
could have been stimulated by pollution as a defense mechanism generated by the 
presence of hydrocarbons. These authors proposed that the role of glomalin and 
GRSPs seems to be promising in the protection of mycorrhizal plants against hydro-
carbon contamination and that the study of plant-AMF applications to bioremedia-
tion should be continued.

1.6.1.2  Heavy Metal (HM) Soil Contamination

A great environmental problem is the heavy metal (HM) soil contamination because 
the metal’s accumulation in the soil is the source from where HM are involved into 
the food chain and, thus, turning these plants and animals into toxic and harmful 
organisms that are then consumed by people. There are plant species capable of the 
hyperaccumulation of HM, the metallophyte; they are useful to remediate contami-
nated soil. Phytoremediation is “the use of plants and associated microorganisms to 
remove, contain, inactivate, or degrade contaminants.” Among the metallophyte, 
many plant species are also hosts of AMF and form AM; moreover, these 
AM-metallophyte function as pioneers at contaminated sites and improve the accu-
mulation of HM by host plants. The improvement of plant tolerance to HM by 
means of their associated AMF can occur through different mechanisms such as 
nutrient supply enhancement or water stress decrease, sequestration of HM through 
binding protein’s production (e.g., glomalin), and bioaccumulation in the root cells 
colonized by AMF structures as well as in the extraradical mycelium. Thus, toxic 
elements such as Cd, Cu, and Pb among others can travel from soil to roots through 
AMF hyphae; however, the fungus may also function as a biological barrier against 
HM transfer from root tissues to the shoot (Molina et  al. 2020 and references 
therein). In this book, Becerra et al. (Chap. 11) provide the information analyzed on 
metallophytes/hyperaccumulator plants and their mycorrhizal status adapted to 
HM-contaminated soils in South America, revealing also the scarcity of data on this 
important topic. Becerra et al. (Chap. 11) showed the mycorrhizal status of metal-
lophytes/hyperaccumulator plant species and focused on the relationship of AMF- 
metallophytes in soils contaminated with Cu from Chile and soils contaminated 
with Pb from central Argentina; they also proposed the use of these results for future 
phytoremediation strategies based on the selection of AMF species with tolerance to 
HM contamination and their application in HM-contaminated soils.
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1.6.1.3  Mycorrhizal Fungi Applied in Restoration

At this time effective ecological restoration of degraded ecosystems and the reduc-
tion of gas emissions are possible solutions to mitigate and counteract the negative 
effects of climate change. It has been pointed out that mycorrhizas are currently 
widely recognized as fundamental components of plant communities and key mod-
ulators of ecosystem functioning (Tedersoo et  al. 2014, 2020). Therefore, the 
mycorrhizal symbioses have to be considered in the context of effective ecological 
restoration due to the practices applied implying the use of potentially mycorrhizal 
plants. Among these issues, the experimental evidences predominantly come from 
the northern hemisphere and showed positive effects on plant biomass and in the 
plant community richness increased by application of mycorrhizal hosts in restora-
tion field experiments. Silva Flores et al. (Chap. 21, in this book) found scarce res-
toration experiments from South America and carried them out in few countries 
(Venezuela, Brazil, Argentina, and Chile); however, most of them showed positive 
effects of mycorrhizal associations on plant restoration performance. Further, South 
American field experiments for ecological restoration have used mainly AMF and 
AM plant species with only one exception for EcM; instead, nor OM neither ErM 
interactions were applied in restoration assays. Thus, Silva Flores et al. highlighted 
running experiments with EcM from Brazil and propose to carry forward research 
in field for ecological restoration that should also consider OM and ErM.

1.7  Mycorrhizal Fungi Diversity, Ecosystem Services, 
and Huge Information Gaps in South America

In South America are placed the countries with the greatest biodiversity in the 
world; one of them is Ecuador, where the Amazon region hosted the main biodi-
verse habitats, settling also the high number of threatened species that also are 
endemic of the region. Soil microorganisms are considered important drivers of 
plant biodiversity (van der Heijden et  al. 2008); however, little is known about 
microbial biodiversity associated with the flora of Amazon. Duchicela et al. (Chap. 
7, in this book) have conducted the analyses of results of mycorrhiza’s research 
done in Ecuadorian Amazon. They studied the mycorrhizal status and diversity of 
Ecuatorian Amazon flora from the publishing data. Their results have suggested 
AMF and AM plant families are dominant in Ecuatorian Amazon ecosystems; that 
is in agreement with the hypothesis of AMF plant associations which are the best 
strategy to sustain plant diversity in low P soils as in the Amazon environments. 
Furthermore, Duchicela et al. highlighted based on the few fungal species described 
to date that the exploration of the Amazon microbiological diversity is of prime 
importance and should be addressed. Thus, the Ecuatorian Amazon region has been 
revealed as a great information gap that urgently needs to be studied on these issues.

1 Overview of the Biodiversity, Conservation, and Sustainable Food Production…



18

In this vast South American continent, also arid and semiarid ecosystems abound 
from the Andes to the coasts of the Atlantic Ocean, passing through the Patagonian 
steppe. Along a precipitation gradient, these diverse ecosystems and their mycor-
rhizal root endophytic associations were revised, and the results summarized by 
Fontela et  al. (Chap. 13, in this book) in Andean and extra-Andean northwest 
Patagonian subregions, including high-Andean environments, forests, steppes, and 
meadows. Fontela et al. have concluded that in the Andean region, AM are prevalent 
in high-Andean plants, native conifers, and other dominant forest trees (except 
Nothofagus spp.) and their understory species. Instead, Nothofagus spp. is some of 
the few ectomycorrhizal Patagonian native species (the Nothofagus mycorrhizal 
symbiosis is detailed studied in Chap. 14 by Fernández et  al.); in extra-Andean 
steppe plants, AM are also abundant; however, non-host plants (NH) were more 
frequent in the central meadow zones. Also, mycorrhizal colonization decreased 
from the forests to the meadows, but density of AMF soil spores and infective prop-
agules followed an opposite trend. In general, mixed mycorrhizal colonization was 
rare, and ErM has a low frequency among other mycorrhizal types and was associ-
ated with few plant species, and the fungal symbionts were taxa of Sebacinales and 
other non-identified Basidiomycota and Ascomycota fungi. Furthermore, the first 
record for South America of Rhizoscyphus ericae was association of EcM with 
Gaultheria host from high Andean in Patagonia. Also Cadophora finlandia and 
Meliniomyces variabilis were identified from Gaultheria as probable ErM myco-
biont and also from Nothofagus ectomycorrhizal morphotypes. Thus, Fontela et al. 
have raised new questions about the capability of Helotiales taxa to form both EcM 
and ErM types. These authors also have recorded dark septate endophytes coexist-
ing with other mycorrhiza types in a wide range of hosts and environments along 
Patagonia, and they encourage further research to deepen global diversity patterns 
and the determining factors for these symbiotic associations.

Finally, previous studies in mycorrhizas along South America yielded relevant 
information on the data gaps for some types of mycorrhizae such as ErM and OM, 
interactions with dark septate endophytes, and other root fungal endophytes. It was 
also noted that large areas of important South American biomes remained to be 
reviewed for their mycorrhizal and endosymbiont symbioses inhabiting the roots, 
i.e., Patagonia, highland ecosystems, Amazon basin ecosystems, rainforest, dry for-
est, wetlands, deserts, and extreme arid regions (Pagano and Lugo 2019 and refer-
ences therein). In this book, several of those information gaps have been filled 
partially, and new data is revealed throughout the chapters that gave rise to this new 
book. However, there are still information gaps that must be filled especially in data 
related to functionality of mycorrhizal associations in South America. Therefore, 
Marín et al. (Chap. 22, in this book) conducted a meta-analysis of research in South 
American mycorrhizal biodiversity and ecosystem functions by means of a Web of 
Science search (1945–2021); they obtained 1528 sampling sites, 80% of them in 
Brazil, Argentina, and Chile. Among them 63.09% studied mycorrhizal biodiver-
sity, while only 12.70% researches were conducted to know mycorrhizal 
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functioning. Surprisingly 24.21% of the works investigated both mycorrhizal biodi-
versity and ecosystem functions; this percentage is higher than researches on these 
issues at global scale research. Marín et  al. also concluded that Atacama desert, 
Patagonian steppe, Cerrado, Chaco, and the Amazonian rainforest biomes need to 
be studied strongly. Moreover, most mycorrhizal functions (except plant growth and 
soil aggregation) were understudied, as well as OM and ErM associations, and few 
specific regions and ecosystems, in general, close to big cities, concentrated the 
main mycorrhizal research in South America. These authors emphasize the need to 
carry out more baseline research on plant and fungal taxonomy, mycorrhization, 
and experiments of response to mycorrhizas to solve the gaps found.

1.8  Conclusions

The excessive use of fertilizers and pesticides is a global threat that affects ecosys-
tems worldwide and particularly in South America. The management of AMF can 
possibly diminish the utilization of agrochemicals which are dangerous to human 
populations and to the environment by the introduction of AMF inoculum into the 
soil of interest. Moreover, possible solutions to the main problems caused by cli-
mate change in crops and vineyards will be elucidated especially regarding the sym-
biosis with mycorrhizas.

In this book, mycorrhizal associations were analyzed and addressed by different 
points of view of the research applied reported in these topics. The keywords that 
highlight the information involved in each one of the chapters that engender this 
book are illustrated in Fig. 1.1. New scientific results have been obtained that fill 
with relevant information the gaps previously detected by the authors, and new chal-
lenges have been found for the investigation of mycorrhizal associations in South 
America.
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Fig. 1.1 Diagram of chapter’s keywords for mycorrhizal associations in South America
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2.1  Belowground Invasions: Concepts and Definitions

Today’s world is characterized by intense anthropic activity, which leads to the con-
stant movement of organisms that are introduced into areas that are outside their 
natural range of distribution. Whether intentional or accidental, this movement 
evades the natural dispersal mechanisms of organisms and the existing biogeo-
graphic barriers (Mack et al. 2000; Richardson et al. 2008). Of the group of organ-
isms that are introduced, only a small fraction manage to establish, naturalize, and 
eventually invade in the regions they are transported  to (Blackburn et  al. 2011; 
Jeschke and Pysek 2018). However, the populations that do invade constitute a seri-
ous problem at a global scale (Lockwood et al. 2007; Simberloff et al. 2013; Gallien 
and Carboni 2017). After more than 60 years since the publication of The Ecology 
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of Invasions by Animals and Plants (Elton 1958), which began the systematic study 
of biological invasions, the invasion of non-native species is nowadays one of the 
main causes of global change.

Non-native species invasions have ecological, economic, and socio-cultural 
consequences. Non-native invasive species can reduce the diversity of native 
species (Vilà et al. 2011; Pyšek et al. 2012), influence the genetic variation of 
local populations by hybridization (Vilà et al. 2000), or interfere with pollination 
networks, dispersal, or other mutualistic associations of the native community 
(Traveset and Richardson 2006, 2014). Invasive species can also affect biogeo-
chemical cycles (Ehrenfeld 2003; Vilà et  al. 2011), disturbance regimes 
(Simberloff 2011), and ecosystem productivity (Vilà et  al. 2011; Simberloff 
et al. 2013). Some biological invasions can negatively impact the services pro-
vided by ecosystems (Ehrenfeld 2010) and cause a negative effect on human 
health and well-being (Pyšek and Richardson 2010). Biological invasions are, in 
turn, economically expensive (Pimentel et al. 2005), which is especially prob-
lematic for developing countries. Although the estimation of economic costs is 
complex and can take into account various factors, reports show that in Argentina, 
for example, invasions cost US$ 6.908 million for the period between 1995 and 
2019 (Duboscq-Carra et al. 2021). For developed countries, the estimates rise to 
1.7 billion British pounds annually in England (Williams et al. 2010), reaching 
US$ 120 billion annually in the United States (Pimentel et al. 2005). In addition 
to the ecological and economic costs, the loss of local diversity and the replace-
ment of native species lead in many cases to the loss of the cultural identity of 
the invaded sites (Simberloff et al. 2013; Rozzi et al. 2018) and the impact on 
ecosystem services related to tourism, culture, and recreation (Pejchar and 
Mooney 2009). Despite these global impacts, and the importance of the ecologi-
cal mechanisms involved in invasion, one of the main questions of invasion ecol-
ogy still remains elusive: why are some populations of introduced species 
successful in their invasion, while others are not (Kolar and Lodge 2001; 
Richardson et al. 2008)?

The global problem of biological invasions has historically been addressed from 
an aboveground perspective (Bohlen 2006; Rundel et al. 2014; Wardle and Peltzer 
2017). The invasion of animals and plants has received greater attention due to their 
conspicuity and visible impacts (Brussaard 1997). Less visible organisms, such as 
those that inhabit the soil, are receiving increasing attention over the last decade as 
their invasions seem to be as widespread as that of conspicuous organisms (Callaway 
et al. 2004; Simberloff et al. 2013). Worms, insects, and fungi, together with other 
soil macro- and microorganisms are transported by humans, most times inadver-
tently, and establish in new habitats, reproduce, and expand their distribution range 
(Lockwood et al. 2007; Vellinga et al. 2009; Blackburn et al. 2011). Soil invasive 
species can shape the aboveground community and impact ecosystem processes 
(Wardle et al. 2004; Bohlen 2006; van der Putten et al. 2007; Suding et al. 2013; 
Wardle and Peltzer 2017; Peay 2018). Given their cryptic nature, the difficulties in 
their study, and the processes involved, belowground invasions are less reported 
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and studied in literature (Reinhart and Callaway 2006; Inderjit and van der 
Putten 2010).

In this chapter, we will review the current understanding of one of the most wide-
spread and pervasive invasions at a global scale: tree species in the Pinaceae and 
their co-invasive ectomycorrhizal fungi (EMF). In this first section, we present 
some concepts and definitions that are relevant to understand the co-invasion pro-
cess. In the second section, we present a myco-centric framework of the invasion 
process with a special emphasis on the evidence from southern South America. We 
address the spatial and temporal zonation of EMF succession in the non-native 
range and pose new questions about the fungal traits involved in successful inva-
sions. In the third section, we mention other examples of plant-EMF invasions in the 
region that we think deserve more attention in the future, and we discuss potential 
implications and future directions. Considering invasion as a process that occurs 
both above- and belowground, we hope to shed light on the idea that the invasion of 
some plants might be explained, in part, by the ecological characteristics of their 
associated symbionts.

2.1.1  Soil Is a Complex Living System

Soil has a set of unique characteristics that make it a system unlike any other found 
in the biosphere, containing a high diversity of organisms that are susceptible to 
changes caused by humans. Soil is a highly heterogeneous environment, which has 
restrictions regarding the availability of nutrients, food resources, and spatial limita-
tions to movement, breathing, and feeding (Wall et al. 2012). The structure of the 
soil is a conditioning factor for the organisms that inhabit it and is in turn influenced 
by them (Brussaard 1997). The chemical, physical, and spatial heterogeneity of the 
soil as a habitat and the adaptations that organisms have developed are probably the 
cause of its great biotic diversity (Young and Crawford 2004; Wall et  al. 2012). 
Human-induced changes, such as urbanization, agriculture, desertification, and 
deforestation, or the invasion of non-native species, affect the diversity of organisms 
that inhabit the soil, as well as its structure and function (Bardgett and van der 
Putten 2014).

Soil organisms do not have a uniform distribution. For many years, and par-
ticularly for microorganisms, soil ecology has been developed under the premise 
that “everything is everywhere, but the environment selects” (Baas-Becking 
1934). In recent decades, evidence has shown that bacteria, protists (Bates et al. 
2013), mycorrhizal fungi (Öpik et al. 2006; Tedersoo et al. 2010, 2014), and soil 
fauna (Wu et  al. 2011) have restricted global distributions due to climatic, 
edaphic, and plant community variations. A clear example of this comes from 
invasion biology: some non- native plant species manage to escape soil pathogens 
in their introduced range, while some need their specific soil mutualists to estab-
lish and, in some cases, invade in the new range (Callaway et al. 2004; Maron 
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et al. 2015; Dawson and Schrama 2016). The distribution patterns of the species 
that inhabit the soil are determined by environmental factors, population pro-
cesses, disturbances, and recolonization events, which operate at different spatial 
and temporal scales (Bardgett and van der Putten 2014). The spatial scale of 
these processes can range from millimeters in the rhizosphere or soil pores to 
hundreds of meters on a regional scale (Ettema and Wardle 2002). The temporal 
scale includes variations during the same day to those in which decades or mil-
lennia are involved (Bardgett and van der Putten 2014). This spatial and temporal 
heterogeneity of soil influences the growth and structure of the plant communi-
ties that grow from it.

Plants influence soil biota, and soil biota differentially affect plant performance 
(Kulmatiski et al. 2008; Bever et al. 2010; van der Putten et al. 2013). This interac-
tion can be negative or positive for the plant, depending on the balance between the 
negative effects of soil pathogens, herbivores, and parasites and the positive effects 
of generally beneficial organisms such as mycorrhizal fungi and nitrogen-fixing bac-
teria (Klironomos 2002; Suding et al. 2013). In turn, these effects may differ in their 
intensity between different plant species (Bever et  al. 2009) and according to the 
context in which they occur (Hausmann and Hawkes 2010). Plant-soil interactions 
play a key role in plant community dynamics, including processes of succession 
(Kardol et al. 2006), restoration (Eviner and Hawkes 2008; Kardol and Wardle 2010), 
and invasion (Klironomos 2002; Callaway et al. 2004; Wolfe and Klironomos 2005). 
In the context of biological invasions, plant-soil interactions could differentially ben-
efit or harm non-native species compared to native ones, facilitating or hindering 
their invasion, respectively (Kulmatiski et al. 2008; Suding et al. 2013; van der Putten 
et al. 2013; Gundale et al. 2014; Inderjit and Cahill 2015; Crawford et al. 2019).

2.1.2  Plants Can Co-invade with Soil Mutualists

Within the species that require mutualistic soil symbionts to invade, three main 
strategies are recognized (Nuñez and Dickie 2014; Nuñez et al. 2016). First, species 
can establish mutualistic associations with soil organisms that are present both in 
the range of origin of the invasive species and in the introduced range, called cos-
mopolitans (Moora et al. 2011). A second strategy involves the formation of novel 
associations with soil symbionts that are absent in the native range but present in the 
invaded range. This can occur either when a native symbiont associates with a non- 
native host species (Tedersoo et al. 2007), or when a native host species associates 
with an introduced soil mutualistic symbiont (Orlovich and Cairney 2004). The 
third strategy is co-invasion, which occurs when a mutualist that is present in the 
native range of an introduced species is also intentionally or accidentally co- 
introduced with its host (Dickie et al. 2010). The introduction of both members of 
the mutualistic association can happen simultaneously or not, but both mutualists 
are new to the invaded ecosystem.
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Fig. 2.1 Pinus contorta invasion in Coyhaique Alto, Aysén, Chile. The original pine plantation 
can still be distinguished at the back, with ectomycorrhizal pine trees escaping from the plantation 
and transforming the landscape  – a steppe ecosystem with patches of native ectomycorrhizal 
Nothofagus antarctica – into a monospecific forest. What does the fungal community look like 
belowground? (Photo credit: N. Policelli)

Co-invasion processes can cause multiple impacts on the native community. One 
of the main consequences is to enable the invasion of non-native trees. This can result 
in the conversion of ecosystems previously free of woody species into forests domi-
nated by a single species (Richardson et al. 2000; Nuñez and Dickie 2014; Rundel 
et al. 2014; Nuñez et al. 2017), as has been reported for vast areas of the southern cone 
of South America, especially in Chile and Argentina (Fig. 2.1). The co-invading mutu-
alists may, in turn, present new enzymatic mechanisms for the ecosystem such as 
atmospheric nitrogen fixation (Vitousek et al. 1987) and the acquisition of nutrients 
that were not previously available. Especially in the case of co-invading ectomycor-
rhizal fungi, new symbionts are being introduced that have the capacity to produce 
enzymes to degrade organic matter to access previously occluded nutrients, such as 
nitrogen (N) (Read and Perez-Moreno 2003), and then transfer those nutrients to their 
plant hosts. This would be especially impactful in ecosystems with no previously 
existing ectomycorrhizal fungi, such as the Hawaiian Islands (Hynson et al. 2013). 
Evidence shows that co-invasion is not a rare phenomenon, being common, for exam-
ple, for ectomycorrhizae and nitrogen-fixing symbioses (Nuñez and Dickie 2014).

2 Ectomycorrhizal Fungi Invasions in Southern South America
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2.1.3  Mycorrhizal Fungi Can Be Strong Determinants 
of Plant Invasions

Mycorrhizal associations are one of the most widespread symbiotic interactions 
between plants and diverse groups of soil fungi. These interactions occur between 
the hyphae of certain fungi, called mycorrhizal fungi, and the subterranean organs 
of the gametophytes of many bryophytes and pteridophytes, as well as the roots of 
most seed-bearing plants and the sporophytes of most pteridophytes. Mycorrhizal 
associations are mainly involved in the absorption of nutrients and water from the 
soil that the fungus provides to the plant in exchange for carbon compounds (Smith 
and Read 2008). Evidence shows that mycorrhizae are the main means of absorp-
tion of nutrients and water for plants, and were present even in the first land plants 
that did not have true roots (Strullu-Derrien et  al. 2018). Mycorrhizal fungi are 
members of the vast community of organisms that colonize the rhizosphere, estab-
lishing an intimate association with the root. The mycorrhizal condition, unlike 
symbioses with parasites, is the normal state of most plants under most ecological 
conditions (Smith and Read 2008). Rather than a friendly relationship between a 
plant and a fungus, the mycorrhizal symbiotic association can vary throughout a 
plant’s ontogeny on a continuum between parasitism and mutualism (Johnson et al. 
1997), depending on both the plant and the fungal partner’s needs (Kennedy 2010).

There are several factors that can determine the potential of mycorrhizal fungi to 
facilitate or hinder the invasion of their hosts (Pringle et al. 2009). For example, the 
degree of dependence of the plant on its symbiotic fungi can vary from plants that 
do not require mycorrhizal association (facultative mycorrhizal), to those that are 
obligate symbionts, which are expected to be constrained during invasion if their 
symbionts are absent (Pringle et  al. 2009; Menzel et  al. 2017). However, recent 
evidence shows that highly invasive plants are more dependent on soil mutualists, 
counteracting the ideal weed hypothesis (Moyano et al. 2020). The presence of the 
fungal symbionts in the new habitat and the moment in which they are introduced 
(Vellinga et al. 2009) are decisive factors in the invasion of their hosts, given that 
their absence can lead to failed invasions or condition invasion lag phases (Nuñez 
et al. 2009; Dickie et al. 2017; Sulzbacher et al. 2018). The degree of flexibility that 
non-native invasive plants exhibit to associate with different species of mycorrhizal 
fungi, both native and non-native, is also a conditioning factor for invasion (Pringle 
et al. 2009). Those plants that only associate with highly specific mycorrhizal fungi 
are expected to be more constrained in their invasion than those that are able to 
associate with a greater variety of fungal species (Pringle et al. 2009; Menzel et al. 
2017). Once both members of the symbiosis are established, non-native fungal sym-
bionts, as well as those of the native community, can influence invasive non-native 
plants as well as native ones (Pringle et al. 2009). These processes can determine the 
success of the invasion and the plant community assembly (Kardol et al. 2007) in 
the invaded range. In the second section of this chapter, we will discuss how not 
only the mere presence of fungal symbionts but also their identity and ecological 
traits matter for the invasion to be successful.
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2.2  Invasive EMF Co-introduced with Invasive 
Pinaceae Trees

One of the most studied examples of plant-fungi co-invasions is that between 
Pinaceae trees and their ectomycorrhizal symbionts. There are no native Pinaceae 
trees in the Southern Hemisphere (we use “pine trees” to refer to the genus Pinus 
and “Pinaceae trees” to include other genera within the family such as Pseudotsuga). 
Examples of some native conifers from the southern cone of South America are the 
monkey-puzzle tree (Araucaria araucana) or the endemic Alerce (Fitzroya cupres-
soides) in Patagonia. Pinaceae trees have been introduced in South America for 
productive and ornamental uses, or as an attempt to prevent soil erosion during the 
early twentieth century. For example, in Isla Victoria, Northern Patagonia, Argentina, 
Pinaceae species from Europe and North America were introduced as part of a nurs-
ery assay to test species’ performance for forestry purposes. Interestingly, the first 
attempts of pine introductions and establishment failed due to the absence of co- 
introduced soil (Richardson and Williamst 2015; Nuñez et  al. 2017). When they 
introduced soil, without necessarily knowing about the presence of mycorrhizal 
symbionts, pine trees – and other species in the Pinaceae – were able to establish. 
Some of them were able to escape the original plantations and invade the native 
community (Richardson and Rejmanek 2004; Simberloff et al. 2010; Rundel et al. 
2014; Nuñez et  al. 2017). One hundred years after those first introductions, the 
landscape has changed greatly with some pine plantations that have been abandoned 
and others that are still being managed, but in both cases with severe invasions 
reported in grasslands and native forests (Fig. 2.1). At a regional scale, there is a 
growing concern about the spread of invasion, mostly in south and central Argentina 
and Chile, which require urgent measures to contain and mitigate the invasion (Peña 
et al. 2008; Simberloff et al. 2010; Nuñez et al. 2017; Franzese et al. 2017; García 
et al. 2018).

Pine invasions have severe impacts on ecosystem processes in the invaded range. 
Impacts include changes in water regimes and disturbances such as fire (Simberloff 
2011; Simberloff et al. 2013; Cóbar-Carranza et al. 2014), reductions in plant diver-
sity at a local scale (Richardson and Williamst 2015; Franzese and Raffaele 2017), 
biotic homogenization (García et al. 2018), changes in soil nutrient cycling (Dickie 
et al. 2011, 2014), and economic losses (Nuñez et al. 2017). In short periods of time, 
less than 10 years, for example, in many invaded sites in Patagonia, the total trans-
formation of a native ecosystem to a non-native monospecific forest can occur 
(Fig. 2.1, García et al. 2018). This conversion translates into changes in microcli-
matic conditions, and the availability of resources leads to a reduction in the rich-
ness and abundance of native plants and promotes the modification of soil biota and 
the alteration of food webs in invaded ecosystems (van der Putten et  al. 2007; 
Simberloff et al. 2010; Richardson and Williamst 2015). To prevent these impacts 
and predict the invasion, biological attributes of the Pinaceae that affect its invasive 
potential, such as its high rate of reproduction, its rapid growth, and its ability to 
disperse over long distances, have been comprehensively studied (Rejmanek and 
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Richardson 1996). However, the impacts and the possibility of predicting the inva-
sion of pines in relation to their interactions belowground have been less explored.

Pinaceae species require ectomycorrhizal fungi (EMF) in order to thrive (Malloch 
et al. 1980; Hibbett et al. 2000). Given the obligate nature of this symbiosis, if EMF 
species are not present in the non-native range, invasion is hampered (Richardson 
et al. 2000; Nuñez et al. 2009). Evidence shows that Pinaceae species overcome this 
hurdle by co-invading with their EM fungi (Dickie et al. 2010). Once present in the 
invaded range, pines and EMF disperse independently (Dickie et al. 2010; Nuñez 
and Dickie 2014; Horton 2017). Although there is evidence that EMF conditions the 
invasion of Pinaceae species, little has been investigated about the ecological char-
acteristics of these microorganisms. Aspects such as the identity (e.g., which spe-
cies of EMF manage to co-invade and what ecological characteristics they possess), 
their ability to spread, or their ability to establish interactions with other native and 
non-native species have been scarcely described in the literature. Understanding the 
mechanisms by which belowground mutualisms influence invasion is a key aspect 
of the ecology and management of invasive species, as well as the conservation biol-
ogy of native habitats (Dickie et al. 2016).

2.2.1  A Myco-centric Invasion Framework to Better 
Understand EMF Success or Failure 
in the Non-native Range

Not all EMF species are successful in the invaded range. Even from those EMF spe-
cies that are able to establish a self-sustaining population outside the nursery, only 
a handful are able to escape the pine plantation and invade. Evidence from South 
America (Hayward et al. 2015a) and from other regions in the Southern Hemisphere 
indicates that there is a pattern in the EMF community composition that follows the 
pine invasion gradient (Fig. 2.2). Here we present here five different groups of EMF 
species according to the place from which they have been isolated in relation to the 
pine invasion. This framework combines the spatial and temporal zonation of EMF 
succession (Peay et  al. 2011) in the non-native range, with a unified conceptual 
invasion model based on what has been described for animals and plant invasions 
(Blackburn et al. 2011). We hope this framework helps better understand the pine- 
EMF co-invasion process from a myco-centric point of view and that it opens new 
questions related to the mechanisms and ecological traits behind these patterns.

2.2.1.1  Non-native EMF That Were Introduced but Never Reported 
in Pine Plantations

Work by Vellinga et al. (2009) and others has accurately tracked the human- mediated 
transportation of ectomycorrhizal fungi from mainly Europe and North America to 
the Southern Hemisphere. Reports come from botanical gardens, isolated 
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Fig. 2.2 Diagram of four different areas of a Pinaceae invasion and a list of the most reported 
EMF taxa at each area of global pine invasions. Some EMF species have never been reported out-
side pine plantations. Other EMF species have been able to invade, but they are always reported to 
be associated with mature pine invasions in which pine trees are dense. Some taxa, predominantly 
suilloid fungi – Suillus and Rhizopogon – are mostly associated with early pine invasions (i.e., the 
invasion front). A small group of EMF have been reported to be present in the soil of the native 
community without any Pinaceae hosts nearby. Evidence suggests that each group of EMF may 
exhibit different ecological traits related to their invasion capacity that could explain the observed 
spatial pattern. EMF that have been introduced but never reported in pine plantations are not shown 
in the diagram but included in the proposed invasion framework

observations, herbarium records, and/or plant nurseries. Some records date back 
from the early 1900s and are based on observations of sporocarps as they predate 
molecular methods to identify species (Horton and Bruns 2001), but most come 
from DNA- sequenced fungal material. Interestingly, there is no further published 
record of many of these introduced species in pine plantations or invasions, even 
when the number of publications on pine-EMF co-invasions has increased dramati-
cally in the last decade. This suggests that even when these EMF species were able 
to overcome the geographical and cultivation barriers thanks to humans, they might 
not have been able to survive or reproduce in the introduced range. Some examples 
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of these EMF species are Laccaria fraterna, Amanita pantherina, Russula capensis, 
Clavulina cristata, and Lactarius piperatus. Specifically for South America, exam-
ples include Hebeloma hiemale, Inocybe kauffmanii, Rhizopogon subolivascens 
(Barroetaveña et  al. 2005), Peziza ostracoderma (Barroetaveña et  al. 2010), 
Hebeloma sacchariolens, Russula consobrina (Sobestiansky 2005), Russula albid-
ula, Tricholoma equestre, and Tricholoma terreum (Wright and Albertó 2002). 
Failure to establish in the non-native range can result from a combination of factors 
related to the EMF species (e.g., low reproductive rate, low responsiveness to colo-
nize roots, high host specificity), the location (e.g., unsuitable soil and/or climate 
conditions, presence of natural enemies), and stochastic effects which are not con-
stant across repeated introductions (e.g., introduction effort). Hence, this doesn’t 
preclude the possibility that subsequent introductions of the same EMF species in 
the same sites will be successful.

2.2.1.2  Non-native EMF Never Reported Outside Pine Plantations

When compiling the information of all the reported EMF-pine interactions in plan-
tations in the non-native range, certain EMF species are frequently reported associ-
ated with planted pine trees in both managed and unmanaged plantations. However, 
a subset of those species have never been reported outside plantations (Fig.  2.2). 
These EMF species have successfully established but haven’t been able to spread 
out of the initial point of introduction yet. Examples of these species are Chalciporus 
piperatus, Hebeloma crustuliniforme, and Lactarius deliciosus. For South America, 
examples include Amphinema byssoides, Rhizopogon ellenae, Laccaria laccata, 
Russula sardonia, Rhizopogon fuscorubens, and Scleroderma bovista (Barroetaveña 
et al. 2005 and references therein). Even when these species are able to survive in the 
wild, reproduce, and self-sustain, their dispersion capacity might be an important 
limitation. Caution should be taken when thinking of these species as non- invasive 
only because they have never been reported outside pine plantations. Some of these 
EMF might be under an invasion-lag phase, and when the conditions are suitable 
(e.g., changes in the soil and/or climate conditions, disturbance, host shift, introduc-
tion of a dispersal vector), they might be able to invade. The question of why these 
species have never been reported outside the plantation is also interesting to under-
stand invasion failures and invasion lags and deserves further exploration in the future.

2.2.1.3  Non-native Invasive EMF Reported Outside Pine Plantations 
but Always in Mature Pine Invasion

Some EMF species have been able to overcome the dispersal barrier and escape 
from the initial introduction point (i.e., invade), but have always been reported to be 
associated with mature invasion sites, where pine trees are dense and older com-
pared to the invasion front (Fig.  2.2). The further from the plantation, the more 
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dissimilar the soil environment is expected to be (Blackburn et al. 2011). Thus, the 
environmental barrier becomes more relevant at a local scale. Root density could be 
a key factor at this point that selects for EMF species with different exploration 
types (Peay et al. 2011). In mature pine invasions, roots are dense due to the proxim-
ity of trees. EMF with shorter exploration types will exhibit a more efficient carbon 
allocation strategy compared to those with longer exploration types and conse-
quently might benefit in mature invasions. Other factors such as soil pH, soil N and 
other soil nutrient availability, litter quality, surrounding vegetation, and the age of 
the Pinaceae host might also act as strong filters for these EMF species. Examples of 
EMF species associated with mature pine  invasions are Amanita muscaria, 
Hyaloscypha finlandica, Hyaloscypha bicolor, Amanita rubescens, Boletus edulis, 
Inocybe curvipes, Paxillus involutus, and Scleroderma citrinum, with evidence from 
South America (Nuñez et al. 2009; Hayward et al. 2015a; Urcelay et al. 2017) and 
other regions (Dickie et al. 2010; Hynson et al. 2013; Gundale et al. 2016). It is pos-
sible that these EMF species are key to sustaining the invasion while pine trees grow 
older. As the invasion advances, the soil conditions become more favorable for this 
subset of EMF, and they take over the roots and replace the initial EMF, as they tend 
to be “more efficient symbionts.”

2.2.1.4  Non-native Invasive EMF Reported in Pine Invasion Fronts

A small group of EMF species, dominated by suilloid fungi (specifically Suillus 
spp. and Rhizopogon spp.), predominate at the invasion front and are key at trigger-
ing the invasion process (Policelli et al. 2019). These EMF species disperse, survive, 
and reproduce at sites across multiple habitats far from the invasion source (Fig. 2.2). 
Apart from being able to disperse further compared to other EMF species, they 
produce a quantitatively higher number of sporocarps and spores compared to other 
EMF. Many of these species are also able to generate a resistant spore bank that can 
last for decades in the soil (Bruns et al. 2009). In turn, those spores are able to ger-
minate faster and colonize the roots of seedlings and young saplings (Policelli et al. 
2019). Most of these species are also able to explore greater distances in the soil with 
their hyphae looking for nutrients and water, as they exhibit a long-distance explora-
tion type. As pine trees are less dense and sparse by several meters in the invasion 
front, this strategy allows EMF to find new hosts to be colonized. The presence of 
other EMF species in the invasion front is variable but not less relevant. Other spe-
cies such as Thelephora terrestris, Wilcoxina mikolae, Hebeloma sp., and Sistotrema 
sp. have also been reported in the invasion front associated with young pine trees 
(Policelli et al. 2019). In turn, while some suilloid fungi such as Suillus luteus and 
Rhizopogon roseolus are within the most invasive EMF, other suilloid fungi have 
never been reported outside pine plantations or mature invasions, so invasiveness 
seems to be variable even within the suilloid group.
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Fig. 2.3 Dispersion is key for successful co-invasion. Both pine trees and EMF disperse indepen-
dently. While pine trees rely mostly on wind for seed dispersal (red arrow), EMF disperse via wind 
but also via animal vectors which can be non-native invasive such as deer and wild boars (green 
lines). However, other dispersal vectors such as birds or humans allow invasive EMF spores to 
reach sites that are far from the invasion source (the question mark indicates that they have not 
been described for non-native invasive EMF yet)

2.2.1.5  Non-native Invasive EMF Reported in Native Communities 
in the Absence of Co-invasive Pine Hosts

Sites dominated by native vegetation, where invasive non-native plants such as 
pines are not yet observed, may be susceptible to invasion due to the presence of 
invasive EMF (Policelli et al. 2020a). Evidence from soil samples collected in the 
field and greenhouse bioassays show that when a Pinaceae host is planted in soil 
dominated by native vegetation far from other Pinaceae hosts, the plant is still able 
to be colonized by co-invasive ectomycorrhizal fungi (Policelli et al. 2020a, 2022). 
A subset of those EMF present in the invasion front, again predominantly suilloid 
fungi, is able to survive in the absence of compatible hosts (Fig. 2.2). These fungi 
disperse before their hosts and set up a “waiting for pine trees” scenario, increasing 
the vulnerability of those sites to further invasion. Most EMF spores disperse pre-
dominantly via wind, as the seeds of Pinaceae trees do (Fig. 2.3). At further dis-
tances from the invasion source, other vectors such as animals (e.g., wild boars and 
deer, which are also non-native invasive in South America) are important in the 
dispersion of invasive EMF, especially for those species with truffle-like sporocarps 
such as Rhizopogon (Nuñez et al. 2013; Soteras et al. 2017). However, recent evi-
dence shows that even in the absence of these mammalian vectors, invasive EMF 
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can reach areas of native vegetation (Policelli et al. 2022). Other dispersal vectors 
such as birds, or even humans, deserve further exploration (Fig. 2.3). Just as the 
invasion of plant or animal species generally leads to a biotic homogenization 
aboveground, the same could be expected to happen in terms of fungal invasion. 
The effects of this possible homogenization of the native community above- and 
belowground remain poorly explored.

We are aware of the fact that not all Pinaceae invasions look like the one shown 
in Fig. 2.1 with a clear invasion front (Hayward et al. 2015b; Policelli et al. 2020a), 
where pine density correlates with pine age. However, evidence shows that the 
above presented framework could also be applied to other pine invasion scenarios. 
Urcelay et al. (2017), for example, found that the EMF community associated with 
invading pines that are colonizing higher elevations in mountains of central 
Argentina follows a similar pattern: the higher pines are, the more dominant suilloid 
fungi become. In a similar study system, Milani et al. (2022) showed that the age of 
pine trees rather than the degree of spatial isolation between individuals affected the 
EMF composition. They report a rich EMF community structured by pine age, with 
more species near older trees and a similar successional pattern in which suilloids 
are more dominant in younger trees.

In summary, the main point of the above framework is that the identity and the 
ecological traits of EMF are relevant and act as a determining factor for their inva-
sion. As the previously described patterns occur with pine trees and most biological 
invasions, it is unclear what the mechanisms behind this pattern of ectomycorrhizal 
fungi composition are. In other words, why are some EMF able to escape from the 
plantation and invade, while other EMF have never been reported outside the plan-
tation or even outside nurseries after introduction? Even so, the pine-EMF co- 
invasion system offers a unique possibility for understanding how the functional 
traits of soil microbial communities affect the ecosystem in their native and non- 
native ranges (Hoeksema et al. 2020).

2.3  Unboxing the Black Box: What Is the Way Forward?

Soil ecology has been considered a black box for decades. In relatively few years, a 
fundamental advance has been made in molecular techniques aimed at analyzing 
the composition of soil microorganisms (Horton and Bruns 2001; Peay et al. 2008; 
Branco et  al. 2017). However, ecological interactions that are well described for 
aboveground communities still remain practically unknown in the case of below-
ground organisms. Processes such as competition between mycorrhizal fungi 
(Kennedy et al. 2007; Kennedy 2010; Mujic et al. 2016), succession (Peay et al. 
2011), or the impact of disturbances on the soil community (Rincón et al. 2014; 
Glassman et al. 2016) require further study to understand not only the species com-
position but also the functional role and assembly of the soil biotic community and 
its impact on the plant community.
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Furthermore, the role of plant-fungal co-invasions on impacting soil biogeo-
chemistry is largely unknown, despite the abilities of introduced fungi to alter soil 
nutrient cycling. For example, invasive EMF may have different metabolic activity 
and nutrient acquisition capabilities than those of native fungal communities, espe-
cially in ecosystems naturally lacking EMF. Suilloid fungi that are dominant on 
pines in early invasions are relatively nitrophobic and thrive in low-N environments, 
suggesting that they have a high capacity for obtaining N locked in soil organic mat-
ter (Wallander and Nylund 1992; Hatakeyama and Ohmasa 2004). Indeed, Suillus 
has relatively high protease and peptidase activity and polyphenol oxidase/peroxi-
dase activity (Talbot and Treseder 2010; Talbot et al. 2015). Efficient N acquisition 
traits of invasive EMF may enable the mining of N from invaded soils and conver-
sion into aboveground tree biomass. Hypotheses such as these remain untested, yet 
are important to understand the full effect of plant-fungal invasions on the biogeo-
chemistry of invaded ecosystems.

Invasion scenarios, such as Pinaceae-EMF co-invasions in South America, are 
ideal models to investigate the consequences of fungal activity like nutrient acquisi-
tion and transfer, interspecies interactions, fungal succession, and community 
assembly by using manipulative experiments involving a low number of plant and 
microbial species (Hoeksema et al. 2020). The co-invasion model between EMF 
and Pinaceae trees represents a possibility to test various questions of the ecology 
of EMF and their role in plant invasions. The ecological characteristics of suilloid 
fungi, for example, make them relatively easy to manipulate under controlled condi-
tions, making it possible to inoculate them on to pine seedlings and evaluate both 
the performance of the EMF and of the seedling under different conditions. A pos-
sible question to evaluate in the future could be how these symbiotic organisms 
interact with the plant under different temperatures, humidities, or soil nutrient con-
tents. Since EMF are essential for the invasion of pines, the change in the intensity 
of the pine-EMF interaction could be evaluated by simulating climate change condi-
tions, in which the role of EM fungi is expected to be fundamental (Rillig et al. 
2002; Compant et al. 2010). In turn, the interaction could be evaluated in relation 
not only to the plant but also to other soil organisms such as saprobic fungi in dif-
ferent soil and plant nutrient conditions (Fernandez and Kennedy 2016) and how 
this can affect the invasion. The combination of a model that is easy to manipulate, 
such as that of pines and suilloid fungi, and the availability of molecular tools opens 
up a range of future questions aimed at better understanding the functionality of 
belowground processes and their role in plant invasions.

We know that many fungal – and other microbial – species are involved in the 
mycorrhizal interaction. However, we know little about the different contributions 
and impact of each of the fungal species. For example, it could be expected that 
some EMF species can be more beneficial than others for drought tolerance (Gehring 
et  al. 2017), while others may confer a higher growth to the plant under certain 
conditions. We know that some groups are different, as in the case of suilloids 
(Policelli et al. 2019), but there are many important factors associated with the roles 
of these species that can be fundamental to understanding the invasion systems and 
probably others. Invasive EMF and invasive pines in South America are a unique 
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scenario to test these questions, due to the reduced number of EMF species – and 
probably reduced functional redundancy  – compared to native ecosystems 
(Hoeksema et al. 2020).

There is increasing interest in how to integrate EMF ecological knowledge into 
restoration and management of ecosystems (Policelli et al. 2020b). We think that it 
is necessary to develop management strategies focused on the interaction between 
invasive plants and soil mutualists. The ecological characteristics of EMF are 
important for their management, in particular their dispersal capacity. These charac-
teristics have the potential to determine management priorities when making deci-
sions. Managing an interaction between two invasive organisms could be more 
effective than managing a single species of interest.

Co-invasion is a generalized mechanism for some invasive ectomycorrhizal 
plants, such as Pinaceae, but the mechanisms by which non-native invasive species 
invade in relation to their fungal symbionts can change according to the context in 
which the invasion happens (Bogar and Kennedy 2013; Moeller et al. 2015). In this 
sense, the case of pine-EMF co-invasions may constitute an exception, since it 
occurs mostly in regions that lack phylogenetically related species. If closely related 
species are present, it may be more probable that non-native invasive species will 
interact with the native soil biota (Tedersoo et al. 2013). The presence of a native 
host species related to the non-native invader would function as a facilitating factor 
for the invasion (Moeller et  al. 2015) based on its interaction with native fungal 
symbionts compatible with both the native and non-native hosts. Using other non- 
native invasive ectomycorrhizal tree species (e.g., species in the Salicaceae or 
Myrtaceae), it could be experimentally tested whether the non-native species man-
ages to establish and grow in soil from sites dominated by the native species given 
the presence of native ectomycorrhizal fungi with which it may associate. In 
turn, this would allow one to test the generality of the co-invasion process for other 
woody trees outside the Pinaceae (Bogar et al. 2015; Nuñez et al. 2016).

During the last decades, the black box of soil has been opened (largely through the 
advent of high throughput DNA sequencing of fungal DNA in soil), but we still do not 
understand much of what is inside and how it is organized. EMF species invasions 
provide an exciting opportunity for fertile collaborations within – but not limited to – 
ecologists, taxonomists, and soil scientists. We are starting to identify the EMF spe-
cies present across the world’s soils and to acknowledge how these species are affected 
by anthropic activities. However, we still do not understand how they interact with 
each other and how those interactions affect ecosystem biogeochemistry. Key ecosys-
tem processes in which EMF are involved, such as litter decay and carbon sequestra-
tion, are still based on abiotic aspects, with less focus on interactions within the 
organisms that are responsible for the process itself. Moreover, other soil inhabitants 
such as protists, bacteria, and viruses are still silently waiting inside the black box of 
soil. This scenario is stimulating and challenging, especially in regions like South 
America. Soil microbial communities are not necessarily governed by the same rules 
as aboveground communities. The conceptual emphasis on the importance of func-
tional diversity, together with the advance of molecular techniques – particularly the 
advantages of -omic approaches – will hopefully disentangle the mechanisms behind 
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the patterns of invasions. This better understanding of belowground processes involved 
in plant invasions will hopefully be useful for the conservation, restoration, and sus-
tainable use of soil ecosystems.
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Chapter 3
Pseudomonotes tropenbosii, an Endemic 
Dipterocarp Tree from a Neotropical 
terra- firme Forest in Colombian Amazonia 
That Hosts Ectomycorrhizal Fungi
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3.1  Introduction

Mycorrhiza, the symbiosis between fungi and plant roots, is the most widespread 
symbiosis occurring in terrestrial ecosystems (van der Heijden et al. 2015). This 
association results from the coevolution between plants and fungi and has evolved 
independently several times in the phyla Ascomycota, Basidiomycota, 
Glomeromycota, and Zygomycota (Rinaldi et al. 2008; van der Heijden et al. 2015). 
The most common mycorrhizal interactions are the arbuscular mycorrhizas (AM) 
and ectomycorrhizas (EcM). EcM fungi play an important role in carbon and nitro-
gen cycling and influence soil structure, ecosystem stability, and productivity (e.g., 
McGuire et al. 2010; Courty et al. 2010; Averill et al. 2014; Bâ et al. 2014; Fernández 
and Kennedy 2015; Corrales et al. 2018, 2022). This group of fungi is often more 
abundant and diverse in sites with nutrient-poor soils, and this suggested that EcM 
associations can optimize plant nutrition and might facilitate the dominance of 
symbiotic plants over others (Torti et al. 2001; Corrales et al. 2016b).

The EcM symbiosis was long thought to be rare or even absent from most of the 
tropics and only present in Asia and Africa associated with dipterocarp and Fabaceae 
hosts and in neotropical mountain ecosystems associated with Holarctic plant fami-
lies, such as Betulaceae, Fagaceae, and Juglandaceae (e.g., Lee 1990; Halling 1996; 
Mueller 1996; Kennedy et al. 2011; Corrales et al. 2016a, b; Tedersoo and Brundrett 
2017). In recent years, the knowledge about the occurrence of EcM associations 
in the Neotropics has improved, evidencing new plant hosts, new EcM fungal lineages, 
and insights in biogeography and diversity patterns (e.g., Tedersoo et  al. 2010b; 
Henkel et al. 2012; Roy et al. 2016; Vasco-Palacios et al. 2018, 2019; Corrales et al. 
2018). In Neotropical lowland rain forests, EcM plants belong mostly to the fami-
lies Fabaceae (subfamilies Caesalpinioideae and Faboideae), Nyctaginaceae, 
Polygonaceae, and Cistaceae (Tedersoo et al. 2010b; Henkel et al. 2012; Moyersoen 
2012; Smith et al. 2013; Roy et al. 2016; Corrales et al. 2018; Vasco-Palacios et al. 
2018). The EcM fungal species richness, host specificity, and distribution vary 
among EcM fungal lineages, families of hosts, and habitats (Roy et  al. 2016; 
Corrales et al. 2018; Vasco- Palacios et al. 2018; Corrales et al. 2022). For example, 
a low diversity of EcM fungi and highly specific host preferences occur with 
Coccoloba (Polygonaceae), Guapira, and Neea (Nyctaginaceae) species. These 
ECM hosts occur scattered throughout the forest, integrated among a matrix of AM 
trees, occur in low densities, and do not form dominant patches (Tedersoo et al. 
2010b; Alvarez-Manjarrez et al. 2018). A DNA metabarcoding study showed a sim-
ilar EcM community composition between soil samples from forests where 
Coccoloba and Neea are dispersed among a matrix of arbuscular mycorrhizal trees 
and forests with the host Pseudomonotes tropenbosii (Dipterocarpaceae) (Vasco- 
Palacios et  al. 2019). On the other hand, a high EcM diversity has been found 
associated with Fabaceae and Cistaceae, plants that occur in high density and form 
monodominant patches (Singer et al. 1983; Henkel et al. 2012; Moyersoen 2012; 
Smith et al. 2013; Roy et al. 2016; Vasco-Palacios et al. 2018). Mycobionts associ-
ated with these plants have a broader host preference (Henkel et al. 2012; Moyersoen 
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2012; Smith et  al. 2013; Roy et  al. 2016; Vasco- Palacios et  al. 2018). The EcM 
associations may contribute to the presence of monodominant tropical forests on 
sites with nutrient-poor soils, which may be due to the fact that EcM fungi can opti-
mize plant nutrition through different mechanisms (Torti et al. 2001; Henkel et al. 
2005; Corrales et  al. 2016a, b; ter Steege et  al. 2019). However, patterns about 
monodominance are not consistent even between host plants of the same genus, and 
those can range from monodominant Dicymbe corymbosa (Fabaceae) forests in the 
Guyana shield to partially dominant stands (25%) of Dicymbe uaiparuensis in 
white-sand forests in western Amazonia (Henkel et  al. 2002; Vasco-Palacios 
et al. 2018).

In the 1990s Pseudomonotes tropenbosii, a dipterocarp tree, was discovered in 
terra-firme forests in the Colombian Amazon basin. Pseudomonotes tropenbosii is 
the only Neotropical species of the family Dipterocarpaceae and a monotypic genus 
in the subfamily Monotoideae (Londoño et  al. 1995). This tree occurs in small 
patches of terra-firme forests in the Amazonian region in Colombia, and its discov-
ery emphasized a phytogeographical link of the Colombian Amazonian area with 
Africa and Madagascar (Londoño et al. 1995; Morton et al. 1999). Dipterocarpaceae 
is a family of mainly tropical lowland rainforest trees with approximately 16 genera 
and 695 species (Christenhusz and Byng 2016). The family is widely distributed in 
Africa and South and Southeast Asia, but only one species occurs in northern South 
America (Lee 1990; Londoño et  al. 1995; Brearley 2012; Bansal et al. 2022). 
Recently, a boreotropical migration or transatlantic dispersal origin has been proposed 
for this neotropical species (Bansal et al. 2022). The ectomycorrhizal symbiosis is 
an ecological feature of at least 61 species of the family, but the ectomycorrhizal 
fungal diversity of even Asian dipterocarps is still poorly known (Brearley 2012; 
Diédhiou et al. 2014; Corrales et al. 2022). In a 6-year survey, 296 species of EcM-
taxa have been recorded in tropical rainforest of Peninsular Malaysia, and a high 
number represented undescribed species (Lee et al. 2003). In previous studies in 
forests with P. tropenbosii, at least five putative EcM fungal taxa have been found 
(Vasco-Palacios et al. 2005; López-Quintero et al. 2012).

Terra-firme forests cover about 80% of the total area of Amazonia and occur in 
upland and non-flooded areas (ter Steege et al. 2000). These forests occur on acidic 
sandy to clayey soils that are well drained and have a relatively high cation exchange 
capacity and a high amount of available phosphorus (Peñuela-Mora 2014; Quesada 
et al. 2010). Notably, the terra-firme forests harbor the world’s most diverse tree 
communities, with few individuals of each tree species present (Duivenvoorden and 
Duque 2010). In some areas of Colombia Amazonia, P. tropenbosii is one of the 
most important canopy species, representing ca. 17% of the all-canopy individuals 
(Londoño et al. 1995; Appanah and Turnbull 1998; Parrado-Rosselli 2005). This 
endemic tree presents a highly restricted distribution with only few populations 
known from the Colombian territory. These populations grow in small patches of 
less than 10 ha and are surrounded by terra-firme mixed forests or flooding forests 
(varzeá).

In this study, we explore the diversity of EcM fungi of the endemic dipterocarp 
species Pseudomonotes tropenbosii. The EcM status was confirmed using 
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molecular evidence using the rDNA ITS region employed for fungal identification 
and the plastid trnL intron for plant identification. We also asked the following ques-
tions: (1) Does P. tropenbosii harbor a unique EcM fungal species? (2) Does the 
EcM fungal community exhibit spatial differences? To answer those questions, we 
performed an exploration of environmental samples from aboveground (sporocarps) 
and belowground (root tips).

3.2  Materials and Methods

3.2.1  Study Site

The field work was performed in three areas of the Colombian Amazonian region. 
Two populations were studied in the Middle Caquetá (MC) region in the north of the 
Amazonia department (Fig. 3.1). In this region, four major forest units have been 
recognized: floodplain forests, white-sand forests, terra-firme forests, and second-
ary forests (Parrado- Rosselli 2005). The communities of P. tropenbosii are present 
in terra-firme forests with a flat to undulating topography with valleys and hills of 

Fig. 3.1 Location of the study sites. The biological station El Zafire (ZBS) in the Southeast 
Amazon Department in Colombia (yellow start) and the Middle Colombian Amazon plots Peña 
Roja (MC1) and Puerto Santander (MC2) (red start)
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20–40 m height. Soils in this area are well drained with low mineral nutrient content 
consisting of sands to clays of the Amazonian Upper and Lower Tertiary Sedimentary 
Plain unit (Parrado-Rosselli 2005). In MC, two sites were visited that are 34 km 
apart from each other. The first site, called MC1, is about 50 km downstream along 
the Rio Caquetá near the locality of Peña Roja (00°34′ S, 79°08′ W) in a previously 
established 1 ha plot of terra-firme forests (Fig. 3.6a). The population of P. tropen-
bosii occurred at the top of a hill, and there is no evidence of a broader distribution 
of the dipterocarp trees beyond this hill. At this site, soils were covered by a deep 
layer of litter mixed with fine roots. The second site called MC2 is located close to 
the village of Puerto Santander (00°39′ S, 72°23′ W). Here, the populations grew 
around the stream of Morelia, and the hills have steeper slopes with smaller and 
obtuse tops. At this site a thin layer of litter occurs due to the steeper slopes. Both 
sites are at 200–300 m a.s.l elevation. The vegetation occurring in this landscape 
unit is characterized by a high species richness. In some areas Mimosaceae, 
Fabaceae, Lecythidaceae, Arecaceae, and Dipterocarpaceae are partially dominant, 
with P. tropenbosii accounting around 17–19% of canopy trees (Castaño-Arboleda 
and Betancur 2004; Parrado-Rosselli 2005). The mean annual temperature is 26 °C, 
and the average annual rainfall is 3060  mm (Duivenvoorden and Lips 1993). 
Although the region does not have a marked dry season, rainfall decreases between 
December and February. These localities were visited 1 week per year, between 
2010 and 2013. An extra site, called Meta and located close to the Middle Caquetá 
area, was visited once due to the distance and difficulty of access. This locality was 
located at 00°45′ S, 71°36′ W and presented a similar climatic condition as MC.

A third population was near the Zafire Biological Station (ZBS) in a previously 
established 20  ha plot in terra-firme forests (coordinates 4°00′  S, 69°53′  W) 
(Fig. 3.1). The ZBS is located in the south of Colombia and 27 km north of Leticia 
(Amazon department), close to the border with Brazil, and this location is separated 
by 420 km from the MC region. The mean monthly rainfall is 277 mm with a drier 
period from June to September (mean monthly rainfall of 189 mm) and a rainy sea-
son from October to May (mean monthly rainfall of 323 mm). The mean tempera-
ture is about 26 °C and does not fluctuate significantly during the year. The relative 
humidity is high with an annual average of 86% (Jiménez et al. 2009; Peñuela-Mora 
2014). This area belongs to the Tertiary Sedimentary Plain unit (Proradam 1979; 
Herrera 1997), which probably originated from the Guiana Shield (Jaramillo et al. 
2010). Soils are sandy and are mainly composed of quartz, well drained, and 
strongly acidic (Jiménez et al. 2009). The terrain is slightly hilly with elevations 
ranging from 80 to 120 m a.s.l., with a hardpan at a 90–100 cm depth (Quesada et al. 
2010). Four major types of forests were present in ZBS, i.e., floodplain forests, 
white-sand forests, transition forests, and terra-firme forests (Jiménez et al. 2009). 
They all represented primary forests with no evidence of human disturbance, except 
for hunting. In this area, P. tropenbosii trees were only present in a small patch, less 
than 1 ha, with low abundance of only 20 trees of P. tropenbosii occurring in the 
plot. This plot was sampled four times during the rainy season, between March 
2012 and November 2014.
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3.2.2  Sporocarp’s Sampling

For the sampling of sporocarps, one plot of 0.1  ha was established per site. 
Sporocarps were collected from each plot with a preference for those that belong to 
putative EcM taxa. The specimens were photographed in situ. From all specimens, 
macromorphological characters were described including fresh color according to 
the Methuen Handbook of Colour (Kornerup and Wanscher 1978), macrochemical 
tests were performed, and spore prints were obtained when possible (Largent et al. 
1977; Franco-Molano et al. 2005). A small piece of the sporocarps was preserved in 
2% cetyltrimethylammonium bromide buffer (CTAB) for further DNA extraction 
(Vargas-Estupiñan et al. 2017). The specimens were dried in the field in a sealed 
container with silica gel. All collections were deposited in the herbarium of the 
University of Antioquia (HUA).

3.2.3  Root Samples

Soil core samples were randomly collected within a few meters from the stem of 20 
trees of P. tropenbosii per site. Soil samples were taken from the 0–15 cm upper soil 
layer. Samples were air-dried, and root tips were examined by light microscopy for 
the presence of a fungal mantle. Different EcM morphotypes were separately stored 
in 2× CTAB buffer for further molecular analyses.

3.2.4  Molecular Analyses

DNA from sporocarps preserved in 2% CTAB buffer was extracted using the 
PrepMan Ultra buffer (Applied Biosystems, Foster City, CA), followed by purifica-
tion with JETquick general DNA cleanup columns (Genomed; Germany) according 
to the manufacturer’s instructions. The fungal internal transcribed (ITS) region of 
the ribosomal DNA (rDNA), including the 5.8S rDNA, was PCR- amplified with 
ITS1F, ITS5, ITS4, and ITS4B primers (Gardes and Bruns 1993; White et al. 1990) 
following Vasco-Palacios et  al. (2014). The D1/D2 domains of the large subunit 
(LSU) rDNA were also amplified from sporocarps with primers LR0 and LR7 and 
for sequencing the primers LR0, LR5, and LR7 were used (Vilgalys and Sun 1994). 
The polymerase chain reaction (PCR) program consisted of 1  cycle of 5  min at 
96 °C; 30 cycles of 45 s at 96 °C and 45 s at 52 °C; 1:30 min at 72 °C; and a final 
extension cycle of 7 min at 72 °C. The amplicons were visualized on a 1% agarose 
gel stained with GelRed (Biotium Inc., USA). Sanger sequencing was performed 
using ABI Prism 3700 Genetic analyzer (Applied Biosystems; CA). DNA from 
mycorrhizal root tips was extracted using the DNEasy plant mini kit (Qiagen, UK) 
following the manufacturer’s recommendations. In cases that the amplification was 

A. M. Vasco Palacios and T. Boekhout



53

not successful, PCR amplification and sequencing of the ITS region were repeated 
using primers ITS 2 and ITS 3 in combination with primers ITS 5 and 4, respec-
tively, which resulted in smaller amplicons (White et al. 1990). To confirm the iden-
tity of the plant host, the chloroplast trnL (UAA) intron and trnL-F spacer were 
amplified and sequenced using the primer combinations trnLc-trnLd and trnLe-
trnLf, respectively (Taberlet et  al. 2007). All rDNA sequences generated were 
edited, and a consensus was obtained from forward and reverse sequences with the 
program SeqMan from the LaserGene package (v8.0, DNAstar).

3.2.5  Sporocarp’s Identification

Identification of the sporocarps was based on a combination of a classical morpho-
logically taxonomy and a molecular approached by analysis of the ITS and LSU 
sequences. Specimens were identified to the species level, and if this was not pos-
sible, they were classified as morphospecies. Specimens were assigned to family, 
genus, and species level based on morphology using keys and descriptions (e.g., 
Corner 1950, 1970; Bas 1978; Grupe et al. 2016; Pegler and Fiard 1983; Singer 
et al. 1983; Simmons et al. 2002; Henkel et al. 2011, 2012; Uehling et al. 2012a, b; 
Wilson et al. 2012). In some cases, we consulted taxonomic specialists, such as Dr. 
Leif Ryvarden, an expert on Coltricia and Coltriciella. Major limitations were that 
sequences from Neotropical EcM fungi are not well represented in the databases. 
Specimens without sequences, due to our inability to get good sequences, and that 
could not be named at the species level based on morphology and that were recog-
nized as being a different species of a certain genus were preliminarily treated as 
distinct morphospecies. The fungal nomenclature was updated using the online ver-
sion of Index Fungorum (http://www.indexfungorum.org).

3.2.6  Host and Fungal Identification from Root Tips

The consensus sequences obtained were compared using the Basic Local Alignment 
Search Tool Nucleotide tool (BLASTN) against UNITE database (Unite Community 
2017) and the International Sequence Database (NCBI) by using the global search 
tool, USEARCH7 (Edgar 2010). As Neotropical fungal species are not well repre-
sented in the databases, we also used the tool BLASTn against the sequences that 
we obtained from the sporocarps. The internal transcribed spacer (ITS) sequences 
were considered to represent the same phylogenetic species, if they differed by <3% 
across the ITS region (i.e., 97% similarity) and for the genus level if they differed 
from 3% to 10% (Hughes et al. 2009). The latter taxonomic units were used when 
the best matches were not informative or when the quality of the DNA from root/
tips sequences was too low. Plant host of root tips was identified by comparing 
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sequences with NCBI database using the BLASTn tool (Edgar 2010). Fungal tax-
onomy and names followed Index Fungorum. All unique sequences were submitted 
to GenBank (Table 3.1; Suppl. Table 3.1). ITS and trnL sequences from P. tropen-
bosii were generated in this study from plant material collected in the field.

3.2.7  Diversity Analyses

We used the entire set of fungal sporocarp records to compute species rarefaction 
curves with 1000 permutations and a 95% confidence interval in the Vegan package 
of R, using the function specaccum (Oksanen et  al. 2013; R Core Team 2013). 
Multivariate permutational analysis of variance with 9999 permutations was imple-
mented in the Adonis routine of the Vegan package (Oksanen et al. 2013) to address 
the effect of the site on fungal community composition of the aboveground compo-
sition. Adonis was calculated on a generated Bray-Curtis distance matrix based on 
the Hellinger transformation of the abundance of species. Simple Mantel tests were 
run in Ecodist package of R (Goslee and Urban 2007) to determine correlations 
between sites and fungal community composition. This was based on the abundance 
of all species per site. Adonis was calculated on a generated Bray-Curtis distance 
matrix base. The similarity between groups of plots by forest and site were com-
pared by a Mantel test in the Ecodist package of R after 9999 permutations (Goslee 
and Urban 2007).

3.3  Results

3.3.1  Aboveground Diversity

Seventy-nine morphospecies of EcM fungi were recognized based on sporocarps 
collected in terra-firme forests with the endemic dipterocarp P. tropenbosii 
(Table 3.1; Fig. 3.2b–m). This diversity belonged to 15 lineages of EcM fungi sensu 
Tedersoo et al. (2010b) and Tedersoo and Smith (2013), namely, /amanita, /boletus, 
/cantharellus, /clavulina, /coltricia, /cortinarius, /elaphomyces, /entoloma, /ino-
cybe, /pisolithus-scleroderma, /russula-lactarius, /sarcodon, /sebacina, and /tomen-
tella-thelephora, and we include here the lineage /trechispora (Table 3.1). The most 
species-rich lineages were /boletus and /clavulina (13 species each), /russula-lactar-
ius (12 species), /coltricia (10 species), /amanita (7 species), /cantharellus (6 spe-
cies), and /cortinarius (5 species) (Fig. 3.3a). These taxa represented 17 families 
and 29 genera. At the family level, Boletaceae and Clavulinaceae were the most 
diverse (13 species each), followed by Russulaceae (12 species), Hymenochaetaceae 
(10 species), Amanitaceae (7 species), Cantharellaceae (6 species), and 
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Fig. 3.2 Terra-firme forests with Pseudomonotes tropenbosii (a) and representative ectomycor-
rhizal fungi collected in the P. tropenbosii forest (b–m). Sporocarps of (b) Pseudotulostoma vol-
vatum, (c) Clavulina guyanensis, (d) Hydnodon thelephorus, (e) Clavulina craterelloides, (f) 
Austroboletus festivus, (g) Boletellus ananas var. minor, (h) Amanita sp1 secc vaginata, (i) 
Amanita xerocybe, (j) Russula gelatinivelata, (k) Lactarius subgenera Plinthogalus sp.; (l) basid-
iospores of Lactarius subgenera Plinthogalus sp.5 and (m) Craterellus strigosus. Photo’s credits: 
A. Vasco-Palacios

A. M. Vasco Palacios and T. Boekhout
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Cortinariaceae (5 species). Additional taxa were found in the Sebacinaceae (3 spe-
cies); Inocybaceae, Sclerodermataceae, and Thelephoraceae (2 species); 
Bankeraceae, Diplocystidiaceae, Elaphomycetaceae, Entolomataceae, Hydnaceae, 
and Hydnodontaceae (represented all by 1 species) (Table 3.1). Fourteen species 
were new reports for Colombia (Table 3.1), and at least six species were new to 
science. Two of those have recently been described as Austroboletus amazonicus 
and Sarcodon colombiensis, respectively (Vasco-Palacios et al. 2014; Grupe et al. 
2016), and the others belonging to genera such as Russula, Coltriciella, and 
Coltricia are under study.

The presence of species represented by sporocarps varied greatly between sites 
and visits. In total, 45 species occurred in MC1, 13 species in MC2, and 37 species 

Fig. 3.3 (a) Proportion of EcM fungal lineages recovered from sporocarps and from root tips from 
the P. tropenbosii forests. (b) Proportion of EcM fungal lineages recovered from sporocarps from 
the P. tropenbosii per site. (c) Proportion of EcM fungal lineages recovered from root tips per site 
(OTUs identified at species and genus level). (d) Proportion of EcM fungal lineages recovered 
from root tips per site (OTUs identified at species level). Sites from the Middle Colombian Amazon 
region sites MC1 and MC2 and from El Zafire Biological station ZBS. The EcM lineages were 
defined according to Tedersoo et al. (2010b) and Tedersoo and Smith (2013)

3 Pseudomonotes tropenbosii, an Endemic Dipterocarp Tree from…
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Fig. 3.4 Rarefaction curve with the number of samples (x-axis) and number of ectomycorrhizal 
fungal species recovered from sporocarps (y-axis) from Colombian P. tropenbosii forests. The 
curve represents the total number of fungal species with 95% confidence interval, 1000 permuta-
tions, and first- and second-order jack-knife, Chao, and Bootstrap estimates of species richness. S 
is the real observed data

in ZBS (Fig. 3.3b). Nine species, e.g., Craterellus strigosus (Fig. 3.2l), Clavulina 
amazonensis, Clavulina guyanensis, and two unidentified species of Amanita 
(Amanita sp.1 and sp.2), were present in most of the field works and found >10 
times. On the other hand, Fistulinella campinaranae var. scrobiculata and Russula 
gelatinivelata (Figs.  3.2d, e) were also abundant, but only observed in MC1. 
Austroboletus amazonicus, a described species (Vasco-Palacios et al. 2014) from 
P. tropenbosii forests, was collected in MC1 and ZBS.

Although the community of EcM fungi was highly diverse, the species accumu-
lation curve indicated that the EcM fungal diversity was not fully recovered during 
sampling (Fig. 3.4). The estimated richness suggested that approximately 125–150 
species (first-order and second-order jackknife/Chao, respectively) might comprise 
the total biodiversity of EcM fungi in these P. tropenbosii forests (Fig. 3.4). Bootstrap 
estimates indicated that approximately 100 species are present, which is close to the 
number of 79 observed species.

3.3.2  Belowground Diversity

The occurrence of ectomycorrhizal fungi on the roots of P. tropenbosii corroborated 
the ectomycorrhizal status of this Neotropical tree. Two hundred eighteen fragments 
analyzed by DNA sequencing showed fungal sequences (92%), and 177 of those 
(81%) represented putative EcM fungi. Overall, 26 species were identified (blast 
match >97%) at species level, 10 genera with 41 sequences at genus level, 11 famil-
ias with 51 sequences at family level (Table 3.1 and Suppl. Table 3.1). These EcM 
fungi belonged to 16 lineages as follows: /amanita, /boletal, /cantharellus, /coltricia, 
/clavulina, /cortinarius, /entoloma, /elaphomyces, /helotiales, /hydnellum-sarcodon, 

A. M. Vasco Palacios and T. Boekhout
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Fig. 3.5 Comparison of abundance between aboveground and belowground diversity. The zero 
line represents the case where a lineage is equal in belowground (sporocarps) and aboveground 
(root tips) samples

/inocybe, /russula-lactarius, /sebacina, /tomentella-thelephora, /xenasmatella, and a 
/facultative biotrophic saprobe (Fig. 3.3b). Considering only the OTUs that were 
identified at species and genus level, the most OTUs-rich lineages were /tomentella-
telephora, /russula-lactarius, and /cortinarius (8 OTUs each), /helotiales (6 OTUs 
each), /hydnellum-sarcodon and /sebacina (5 OTUs each), and /cantharellus (4 
OTUs) (Table 3.1; Suppl. Table 3.1; Fig. 3.3c). The composition of lineages was 
similar among MC1, MC2, and ZBS, represented by eight, nine, and ten lineages, 
respectively (Fig. 3.3d). However, the richness varied between sites with 27 OTUs 
in MC1, 19 OTUs in MC2, and 14 OTUs in ZBS (Fig. 3.3c, d). The most abundant 
OTUs were Craterellus cinereofimbriatus (8 detections) and unidentified species of 
Cortinarius sp. 866root (10 detections), Cortinarius sp. 917root (8 detections), and 
Tomentella sp. 1452root (11 detections), but most of the taxa were detected only 
twice or once (Table 3.1). Most of the species were not specifically associated with 
P. tropenbosii, e.g., 12 OTUs were also reported previously from roots of P. diptero-
carpacea, 16 from Dicymbe forests in Guyana, and 14 from Dicymbe uaiparuensis 
occurring in white-sand forests in Colombia (Table 3.1). Overall, 15 species were 
found in both analyses, namely, aboveground as sporocarps and belowground on the 
root tips of P. tropenbosii using DNA (Table 3.1; Fig. 3.5).

3 Pseudomonotes tropenbosii, an Endemic Dipterocarp Tree from…
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Fig. 3.6 Venn diagrams comparing EcM fungal diversity between Middle Caquetá region sites. 
(a) 1 (MC1) and 2 (MC2) and El Zafire (ZBS), (b) between MC sites and ZBS

3.3.3  EcM Fungal Composition

The EcM fungal composition among sites using sporocarp counts revealed signifi-
cant differences (ADONIS, P  > 0.05; Mantel P  > 0.05). Only five species were 
found in all sites, one species occurred in MC1 and MC2, and 14 species were found 
in MC1 and ZBS, while no overlap in species was observed between MC2-ZBS 
(Fig. 3.6a) (ADONIS, F2,3  =2.80, P = 0.001; MC1-MC2, MC1-ZBS, MC2-ZBS; 
Mantel P > 0.001). In total, 52 species occurred in MC1, 43 species occurred in 
ZBS, and MC2 showed much less richness with only 13 species. Overall, commu-
nity composition was most similar between sites MC1 and ZBS that shared 15 spe-
cies despite the considerable geographical distance between these two forests 
(Fig. 3.6a). Considering the Middle Colombian Amazon region as a unit, 59 species 
of EcM fungi were recovered, and 25 species were shared with the geographically 
separated area ZBS (Fig. 3.6b). The sites MC1 (12 lineages) and ZBS (12 lineages) 
differed by the lineage /hydnellum-sarcodon, represented by a new species of 
Sarcodon, S. colombiensis. In site MC2 only seven lineages were represented. We 
expected a similar diversity and composition between sites MC2 and MC1, because 
these two sites are relatively close in distance. MC2, however, presented low EcM 
diversity and shared only six species with MC1. Thirty-nine species have been pre-
viously reported from Fabaceae forests, and twenty- four of those were shared with 
white-sand forest with Dicymbe uaiparuensis in the ZBS area.

A. M. Vasco Palacios and T. Boekhout
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3.3.4  Other Taxa Collected Off of the Studied Plots

Twelve species of EcM fungi were recorded from a P. tropenbosii forest located at 
the south of MC1 in a place called Meta, but that was visited only once (Table 3.1). 
Ten species were shared between the MC and ZBS plots, but Scleroderma sp.3 and 
Cortinarius sp.7 were only observed from this site.

3.3.5  Host Plant Identification

The hosts of each of the 98 mycorrhizal roots that corresponded to EcM fungal spe-
cies were identified as P. tropenbosii (83 detections), Coccoloba sp. (1 detection), 
and other plants not reported as EcM hosts (4 detections, e.g., Brosimun sp., 
Erythroxylum sp., Ipomoea sp., Protium sp.). Ten sequences were not informative 
and could not be used for the identification of the plant host.

3.4  Discussion

This is the first in-depth study on the diversity of EcM fungi associated with the 
endemic dipterocarp tree P. tropenbosii occurring in Colombia Amazonia. Our 
study confirmed the EcM fungal symbiosis with this Neotropical tree and adds new 
data on the diversity and distribution of the EcM fungi Neotropical lowland rainfor-
est of the Amazonia region. Here, EcM fungi were common and diverse, both in 
terms of species and known ectomycorrhizal lineages. A total of 90 species were 
documented, 79 of the total in the aboveground and 26 species belowground. 
Only 11 species occurred in both analyses, showing important differences when 
fungi are studied based on sporocarps or root tips. All of the major EcM records 
associated with P. tropenbosii forests consisted of taxa and lineages that have been 
reported previously in tropical forests associated with Dipterocarpaceae (i.e., 
Brearley 2012; Peay et al. 2010; Phosri et al. 2012), Fabaceae (i.e., Henkel et al. 
2012; Smith et  al. 2013; Vasco-Palacios et  al. 2018), and Cistaceae (Moyersoen 
2006, 2012; Smith et al. 2013). Members of the /clavulina, /coltricia, /russula-lac-
tarius, and /boletus lineages were particularly abundant in the aboveground count-
ing representing 59% of the species, whereas in the belowground analysis, these 
were /tomentella-thelephora, /russula-lactarius, and /cortinarius, representing 40% 
of all OTUs (Fig. 3.5). Discrepancies between EcM fungal diversity estimated from 
sporocarp surveys versus those based on belowground root tip molecular sampling 
were observed particularly in the lineages /amanita, /boletales, /clavulina, and /col-
tricia that were under-represented belowground, whereas /tomentella-thelephora, /
helotiales, and /sebacina were over-represented (Fig. 3.5). This bias has been previ-
ously reported from temperate and tropical sites (Corrales et  al. 2022). In 
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Fabaceae-dominated forests in Guyana and Colombia, taxa in the /sebacina and /
tomentella-thelephora lineages were abundant on root tips, but less frequently 
recovered from sporocarps (Smith et al. 2011; Vasco-Palacios et al. 2018). Species 
of Tomentella and Sebacina have cryptic or atypical sporocarps that may be easily 
overlooked and poorly recovered as sporocarps during surveys (Smith et al. 2011; 
Vasco-Palacios et al. 2018). For this reason, it is important to study the fungal diver-
sity both above- and belowground, accompanied by molecular tools, to fully char-
acterize the fungal community.

Considering that our sampling of P. tropenbosii-associated fungi remained below 
of saturation (Fig. 3.3), the cumulative data suggested that the diversity of mycor-
rhizal fungi associated to P. tropenbosii is high. In a previous study of the fungal soil 
community in PtF forests, 129 OTUS of EcM fungi were detected through 454-pyro-
sequencing of the ITS2 region (Vasco-Palacios et al. 2019). Incomplete recovery of 
EcM fungal diversity in our study was corroborated by the notion that 10 OTUs 
(identified at species level) detected from the roots have not been found as sporo-
carps and 62 species collected as sporocarps were not detected from the roots of 
P. tropenbosii. These data indicate that more sampling is necessary to fully docu-
ment the diversity of EcM fungi associated with P. tropenbosii in the Colombian 
Amazon. For example, in Guyana, the species richness associated with host plant 
legumes in Guyana amounts to more than 170 species over a 13-year sampling 
period (Henkel et al. 2002, 2011, 2012; Smith et al. 2011). Species richness may 
also be related to the fact that P. tropenbosii does not form monodominant patches 
or large populations in the Middle Colombian Amazon region. Despite P. tropenbo-
sii is one of the most important canopy species, the relative abundance of this tree is 
not more than 18%, and its populations do not occupy more than a couple of hect-
ares (Appanah and Turnbull 1998; Londoño et  al. 1995; Parrado-Rosselli 2005). 
Henkel et al. (2012) considered that the high α fungal diversity in forests dominated 
by Dicymbe corymbosa in Guyana is because this tree maintains a relative abun-
dance of 60–90% with the presence of high numbers of seedlings and saplings in the 
Guyana plots, which results in an ample substrate availability of EcM fungi. 
Considering that P. tropenbosii is not monodominant, this implies that less roots are 
available for EcM fungi to colonize, and therefore more competition is at stake 
resulting in a lower species richness compared with other tropical ectotrophic eco-
systems (Smith et al. 2011; Alvarez Manjarrez et al. 2018).

When doing more studies in Neotropical ecosystems, it is getting clearer that our 
knowledge on the distribution patterns of fungal species has changed, and ectomy-
corrhizal fungal species present in the Amazonian region seem to occur associated 
with a wide range of plant hosts. Based on the analyses we did, species were found 
to be conspecific with those occurring in other EcM forests dominated by Fabaceae 
(43% of the species shared) and Cistaceae (14% of the species shared) occurring in 
tropical lowland rainforests tropical from Colombia, Guyana, and Venezuela 
(Henkel et al. 2012; Moyersoen 2006, 2012; Smith et al. 2013; Vasco-Palacios et al. 
2018). Some examples are Amanita xerocybe, Craterellus atratus, Clavulina kun-
mudlutsa, Clavulina sprucei, and Coltricia oblectabilis that were present in the 
Colombian P. tropenbosii forest as well as the other forests (Henkel et  al. 2012; 
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Moyersoen 2006; Smith et al. 2013; Vasco- Palacios et al. 2018). Although a high 
diversity of EcM fungi was shared between P. tropenbosii and Fabaceae forests, this 
pattern is not homogeneous and seems determined by factors that we do not under-
stand yet. For example, in the ZBS region, only 21 species are shared between terra-
firme forests with P. tropenbosii and white-sand forests with Dicymbe. Also, 
considerable differences between these two forests were detected in a metabarcod-
ing analysis of soils, despite the two populations were only 5  km apart (Vasco-
Palacios et al. 2019). Furthermore, the same study revealed a similar EcM fungal 
community from nearby forests with few individuals of Coccoloba and Neea occur-
ring scattered within a matrix dominated with plants with AM symbiosis (Vasco-
Palacios et  al. 2019), suggesting that those are an important host to focus on in 
future diversity and biogeographic studies.

In addition, the distribution of some fungal species that were previously consid-
ered to be restricted to the Guiana Shield region was extended in this study. This is 
the case of Pseudotulostoma volvatum, an ectomycorrhizal ascomycete described 
from Dicymbe forests in Guyana that was collected once (MC2) and detected from 
root tips (Table 3.1, Fig. 3.2b). Particularly relevant is the case of Clavulina, a glob-
ally distributed genus. These taxa present a high richness recorded in Dicymbe- and 
Pakaraimaea-dominated forests in Guyana. Hence, this locale was proposed as the 
diversification spot for this lineage (Uehling et al. 2012a, b). In P. tropenbosii for-
ests, 13 species collected as sporocarps represented 70% of the total of species 
reported from Guyana (Henkel et al. 2012). Three species were also detected from 
roots, namely, Clavulina amazonensis, Clavulina cinereoglebosa, and Clavulina 
rosiramea (Table  3.1). C. amazonensis has been found also in central Brazil, 
Ecuador, and Venezuela (Corner 1970; Petersen 1988; Tedersoo et  al. 2010b; 
Wartchow 2012; Vasco- Palacios et al. 2018).

Russulaceae has previously been suggested as the most diverse in tropical 
ecosystems (De Crop et al. 2017). In our study, the family was represented by 14 
species, which is a low number of species when compared to observations made in 
other Neotropical studies. In Guyana, for example, 35 species have been reported 
from Cistaceae and Fabaceae forests after 2 and 13  years of sampling periods, 
respectively (Henkel et al. 2012; Smith et al. 2013). In Colombia, 15 species were 
found after 2 years of collection in white-sand forests with Dicymbe uaiparuensis in 
El Zafire (Vasco-Palacios et al. 2018). Among the species, Russula gelatinivelata, a 
species described from the greater Guiana Shield (Miller et al. 2012), was abundant 
at both MC sites, but it was not found in the plot at the ZBS site. Despite the low 
diversity found, eight morphospecies collected in this study could not yet be identi-
fied at species level and likely correspond to new species (Table 3.1). So far, only 
two species of ectomycorrhizal fungi collected in forests with P. tropenbosii have 
been described, namely, Austroboletus amazonicus and Sarcodon colombiensis 
(Vasco-Palacios et al. 2014; Grupe et al. 2016). Taxonomic work on some of these 
potentially new species is ongoing (e.g., Amanita, Coltricia, Coltriciella, and among 
Russulaceae). An interesting group is this of Coltricia-Coltriciella, seven species 
were identified from P. tropenbosii forests, and three of those correspond to new 
taxa. Another genus that should be studied is Cortinarius. This is one of the most 
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species-rich genera in Holarctic and Austral regions, and it is rare in tropical areas 
(Moyersoen 2012; Tedersoo et al. 2010b). However, in this study six morphospecies 
of Cortinarius were identified from sporocarps, which is the same number of spe-
cies recorded by Henkel and collaborators from Dicymbe- and Pakaraimaea-
dominated forests in Guyana (Smith et al. 2013), and 11 species were recorded by 
Moyersoen (2006) from Venezuela. Based on ITS sequences only, one species that 
was obtained as sporocarps and four that have been obtained as OTUs at species 
level from roots, were shared between P. tropenbosii and the Fabaceae and/or 
Pakaraimaea hosts (Table 3.1). Thus, we assume that the diversity of this genus in 
the Neotropics may be extensive.

The fungal community composition presented significant differences across sites 
(Fig. 3.3b–d). This is consistent with some other studies in tropical ecosystems (e.g., 
Peay et al. 2010), where the differences in fungal communities in the tropics may 
correspond to the patchiness of soil properties (Bahram et al. 2013). Our results sug-
gested that variation in EcM fungal communities may be due to soil composition and 
landscape structure, features that need to be studied in detail in the future and may 
drive the species turnover in tropical lowland forests. In general, P. tropenbosii popu-
lations form relatively isolated stands surrounded by nectotrophic mixed forests. In 
MC1, the site that presented the highest diversity of EcM fungi, the trees were located 
at the flatter part of the hills, while in MC2 that presented less diversity, the topogra-
phy is more irregular, and trees were located at steeper slopes, and for this reason less 
litter accumulated (Parrado-Rosselli 2005). In ZBS, the density of the trees of P. tro-
penbosii is less than in MC, but the topography is more similar to MC1 and the litter 
layer around the P. tropenbosii stands is considerable, and 43 species of EcM fungi 
were recovered from this site. The Northern MC area is separated from ZBS by 
approximately 420 km. No populations of P. tropenbosii are known to occur between 
these two areas, but it does not mean that they do not exist, as the Amazon region in 
Colombia is vast with large areas that remain to be explored. In addition, EcM fungal 
species also could form association with other plant hosts (Fabaceae) even with those 
present in AM-dominant forests such as Nyctaginaceae and Polygonaceae, favoring 
fungal dispersal between P. tropenbosii patches. A long-distance dispersal is also a 
mechanism that may explain the broad distribution of EcM fungi in the Amazonian 
region. However, small-scale variations in the soil types and structure, landscape 
variations, varying abundances of the hosts, and litter quality, among others, also 
play important roles to enhance the alpha and beta diversity of EcM fungi at small 
spatial scale, but this also needs to be addressed in further studies.

3.5  Conclusions

Evidence of the EcM status of P. tropenbosii was provided in this study, and this 
may suggest a Gondwana origin of this ectomycorrhizal symbiosis of members of 
the family Dipterocarpaceae. Pseudomonotes tropenbosii presents a high richness 
of EcM symbionts. Ninety EcM fungal species are reported in this study, even 
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though the trees do not form large canopy forests in dense stands, as occurring in 
Guyana with Fabaceae and Cistaceae. Discrepancies between EcM fungal diversity 
estimated from sporocarp surveys versus those based on molecular sampling of 
belowground root-tips demonstrates the importance to use complementary inven-
tory tools and surveys to fully characterize the fungal communities present. We 
found differences in the diversity and richness of species across sites, independent 
of the abundance of P. tropenbosii and the proximity of the sites, suggesting that 
environmental differences among sites are important in structuring the EcM fungal 
communities. Soil composition has been found to explain the structure of such fun-
gal communities in the amazonian region (Vasco-Palacios et al. 2018), and this 
factor should be considered in the future to understand how it influences the EcM 
communities associated to P. tropenbosii. Similarities in the EcM fungal commu-
nity between geographically remote places suggests that long range fungal dispersal 
and the low host-specificity, are important mechanism for the distribution of these 
fungi in the region, that is dominated by AM-forests. In this vast region, an enor-
mous number of fungal species form ectomycorrhizae with plants of the Cistaceae, 
Dipterocarpaceae, and Fabaceae families. Lack of specificity allows fungal species 
to have a wide distribution even though hosts are present in small populations, often 
scattered throughout the region. More research is needed on the factors driving the 
diversity, distribution, and community structure of EcM fungi in neotropical low-
land forests, as well as their relationship to plant hosts and their functional roles.

Acknowledgments This research was supported in part by grants to Aida Vasco from the 
Netherlands Fellowship Programme (NFP) of the Netherlands Organization for International 
Cooperation in Higher Education (NUFFIC), the Faculty for the Future – Schlumberger Foundation 
(FFTF Grant 2011–2013), and the International Foundation of Science (IFS Grant D/5052–1, 
2011-2-13f) and Utrecht University 2014–2015. We would also like to thank Miguel Arcangel and 
Eduardo Paki and his family for their advice on the forests and Maria Cristina Peñuela for her 
contributions to the knowledge of white-sand forests in Colombia and for facilitating our work in 
the biological station El Zafire and the Laboratorio de Taxonomía y Ecología de Hongos de la 
Universidad de Antioquia. The authors would like to thank Prof. Dr. Han Wösten for his advice and 
comments on a previous copy of the manuscript. Research permission for this study was number 
07, 1-March-2012 (Autoridad Nacional de Licencias Ambientales, ANLA-Colombia). Access to 
genetic resources for scientific research contract, with non-commercial interest No 73, 21 May 
2013 (Ministerio de Ambiente y Desarrollo Sostenible, MADS-Colombia). Thanks to Diego 
Simijaca for Fig. 3.1.

References

Alvarez-Manjarrez J, Garibay-Orijel R, Smith ME (2018) Caryophyllales are the main hosts of a 
unique set of ectomycorrhizal fungi in a Neotropical dry forest. Mycorrhiza, 28(2):103–115

Appanah S, Turnbull JM (1998) A review of dipterocarps: taxonomy, ecology, and silviculture. 
CIFOR, Bogor

Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and 
decomposers drives soil carbon storage. Nature 505:543–545

Bâ AM, Duponnois R, Moyersoen B, Diédhiou AG (2014) Ectomycorrhizal symbiosis of tropical 
African trees. Mycorrhiza 22:1–29

3 Pseudomonotes tropenbosii, an Endemic Dipterocarp Tree from…



74

Bahram M, Koljalg U, Courty PE, Diedhiou AG, Kjøller R, Polme S, Ryberg M, Veldre V, Tedersoo 
L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different 
ecosystems and scales. J Ecol 101(5):1335–1344

Bansal M, Morley RJ, Nagaraju SK, Dutta S, Mishra AK, Selveraj J, Kumar S, Niyolia D, Harish 
SM, Abdelrahim OB, Hasan SE (2022) Southeast Asian Dipterocarp origin and diversification 
driven by Africa-India floristic interchange. Science 375(6579):455–460

Bas C (1978) Studies in Amanita—I. Some species from Amazonia. Persoonia-Molecular 
Phylogeny and Evolution of Fungi 10(1):1–22

Brearley FQ (2012) Ectomycorrhizal associations of the Dipterocarpaceae. Biotropica 44:637–648
Castaño-Arboleda NC, Betancur JB (2004) Estimación de la oferta de frutos en el gradiente verti-

cal de un bosque del medio Caquetá, Amazonia colombiana. Acta Bioló Colomb 9:106
Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its 

annual increase. Phytotaxa 261:201–217. https://doi.org/10.11646/phytotaxa.261.3.1
Corner EJH (1950) A monograph of Clavaria and allied genera. Oxford University Press, London
Corner EJH (1970) Supplement to a monograph of Clavaria and allied genera. Beih Nova Hedwig 

33:1–299
Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW (2016a) Variation in ectomycorrhizal 

fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical 
montane forest. Mycorrhiza 26:1–17

Corrales A, Mangan SA, Turner BL, Dalling JW (2016b) An ectomycorrhizal nitrogen economy 
facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392

Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics–biogeogra-
phy, diversity patterns and ecosystem roles. New Phytol 220:1076–1091

Corrales. A, Koch R, Vasco-Palacios AM, Smith M, Wei Ge Z, Henkel TW (2022) Diversity and 
Distribution of tropical ectomycorrhizal fungi. Mycologia. 14, submitted

Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault MP, Uroz S, 
Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new 
perspectives and emerging concepts. Soil Biol Biochem 42(5):679–698

De Crop E, Nuytinck J, van de Putte K, Wisitrassameewong K, Hackel J, Stubbe D, Hyde KD, 
Roy M, Halling RE, Moreau P-A, Eberhardt U, Verbeken A (2017) A multi-gene phylogeny of 
Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the 
genus. Persoonia 38:58–80

Diédhiou AG, Ebenye HC, Selosse MA, Awana NO, Bâ AM (2014) Diversity and community 
structure of ectomycorrhizal fungi in mixed and monodominant African tropical rainforests. In: 
Bâ AM, McGuire KL, Diédhiou AG (eds) Ectomycorrhizal symbioses in tropical and neotropi-
cal forests. CRC Press, Boca Raton, pp 3–18

Duivenvoorden JF, Duque AJ (2010) Composition and diversity of northwestern Amazonian rain-
forests in a geoecological context. In: Amazonia: landscape and species evolution: a look into 
the past. Wiley- Blackwell, Chichester/Hoboken, pp 360–372

Duivenvoorden JF, Lips JM (1993) Ecología del paisaje del medio Caqueta: memoria explicativa 
de los mapas. Landscape ecology of the middle Caqueta basin: explanatory notes to the maps 
(maps, scale 1: 25,000) (No. 3). Tropenbos Internacional-Colombia, Bogotá

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 
26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

Fernández CW, Kennedy PG (2015) Moving beyond the black-box: fungal traits, community 
structure, and carbon sequestration in forest soils. New Phytol 205:1378–1380

Franco-Molano AE, Vasco-Palacios AM, López-Quintero CA, Boekhout T (2005) Macrohongos 
de la región del medio Caquetá-Colombia. Multimpresos Ltd, Medellín

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application 
to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological 
data. J Stat Softw 22:1–19

Grupe AC, Vasco-Palacios AM, Smith ME, Boekhout T, Henkel TW (2016) Sarcodon in the 
Neotropics II: four new species from Colombia and a key to the regional species. Mycologia 
108:791–805

A. M. Vasco Palacios and T. Boekhout

https://doi.org/10.11646/phytotaxa.261.3.1
https://doi.org/10.1093/bioinformatics/btq461


75

Halling RE (1996) Boletaceae (Agaricales): latitudinal biodiversity and biological interactions in 
Costa Rica and Colombia. Rev Biol Trop 44:111–114

Henkel TW, Terborgh J, Vilgalys RJ (2002) Ectomycorrhizal fungi and their leguminous hosts 
in the Pakaraima Mountains of Guyana. Mycol Res 106:515–531. https://doi.org/10.1017/
S0953756202005919

Henkel TW, Mayor JR, Woolley LP (2005) Mast fruiting and seedling survival of the ectomy-
corrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytol 
167:543–556. https://doi.org/10.1111/j.1469- 8137.2005.01431.x

Henkel TW, Aime MC, Uehling JK, Smith ME (2011) New species and distribution records of 
Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield. Mycologia 103:883–894. 
https://doi.org/10.3852/10- 355

Henkel TW, Aime MC, Chin MM, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal 
fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant for-
ests of the Guiana Shield. Biodivers Conserv 21:2195–2220. https://doi.org/10.1007/
s10531- 011- 0166- 1

Herrera J (1997) Geografía. In: Zonificación ambiental para el plan modelo Colombo-Brasilero (Eje 
Apaporis-Tabatinga: PAT). Instituto Geográfico Agustín Codazzi-IGAC, Bogotá, pp 137–163

Hughes KW, Petersen RH, Lickey EB (2009) Using heterozygosity to estimate a percentage DNA 
sequence similarity for environmental species delimitation across basidiomycete fungi. New 
Phytol 182:795–798

Index Fungorum. Search Page  – Index Fungorum. http://www.indexfungorum.org. Consulted 
April-2022

Jaramillo C, Hoorn C, Silva SA, Leite F, Herrera F, Quiroz L, Dino F, Antonioli L (2010) The 
origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical 
record. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution, 317–334

Jiménez EM, Moreno FH, Peñuela MC, Patino S, Lloyd J (2009) Fine root dynamics for for-
ests on contrasting soils in the Colombian Amazon. Biogeosciences 6:2809–2827. https://doi.
org/10.5194/bg- 6- 2809- 2009

Kennedy PG, Garibay-Orijel R, Higgins LM, Angeles-Arguiz R (2011) Ectomycorrhizal fungi in 
Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns 
in phylogeography. Mycorrhiza 21:559–568

Kornerup A, Wanscher JH (1978) Methuen handbook of colour. Methuen, London
Largent DL, Johnson D, Watking R (1977) How to identify mushrooms to genus III: microscopic 

features. Mad River Press Ink, Eureka
Lee SS (1990) The mycorrhizal association of the Dipterocarpaceae in the tropical rain forests of 

Malaysia. Ambio 19:383–385
Lee LS, Watling R, Turnbull E (2003) Diversity of putative ectomycorrhizal fungi in Pasoh Forest 

Reserve. In: Pasoh. Springer, Tokyo, pp 149–159
Londoño AC, Alvarez E, Forero E, Morton CM (1995) A new genus and species of 

Dipterocarpaceae from the Neotropics. I. Introduction, taxonomy, ecology, and distribution. 
Brittonia 47:225–236

López-Quintero CA, Straatsma G, Franco-Molano AE, Boekhout T (2012) Macrofungal diver-
sity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodivers 
Conserv 21:2221–2243

McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R (2010) Slowed decomposition is 
biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 164:785–795

Miller SL, Aime MC, Henkel TW (2012) Russulaceae of the Pakaraima Mountains of Guyana 2. New 
species of Russula and Lactifluus. Mycotaxon 121:233–253. https://doi.org/10.5248/121.233

Morton CM, Dayanandan S, Dissanayake D (1999) Phylogeny and biosystematics of 
Pseudomonotes (Dipterocarpaceae) based on molecular and morphological data. Plant Syst 
Evol 216:197–205

Moyersoen B (2006) Pakaraimaea dipterocarpacea is ectomycorrhizal, indicating an ancient 
Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 
172:753–762. https://doi.org/10.1111/j.1469- 8137.2006.01860.x

3 Pseudomonotes tropenbosii, an Endemic Dipterocarp Tree from…

https://doi.org/10.1017/S0953756202005919
https://doi.org/10.1017/S0953756202005919
https://doi.org/10.1111/j.1469-8137.2005.01431.x
https://doi.org/10.3852/10-355
https://doi.org/10.1007/s10531-011-0166-1
https://doi.org/10.1007/s10531-011-0166-1
http://www.indexfungorum.org
https://doi.org/10.5194/bg-6-2809-2009
https://doi.org/10.5194/bg-6-2809-2009
https://doi.org/10.5248/121.233
https://doi.org/10.1111/j.1469-8137.2006.01860.x


76

Moyersoen B (2012) Dispersion, an important radiation mechanism for ectomycorrhizal fungi in 
Neotropical lowland forests? In: Sudarshana P, Nageswara-Rao M, Soneji JR (eds) Tropical 
forests. InTech, Rijeka, pp 93–116

Mueller G (1996) Distribution and species composition of Laccaria in tropical and subtropical 
America. Rev Biol Trop 44:131–135

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Wagner H (2013) Package 
“vegan”. R Packag ver 254:20–28

Parrado-Rosselli A (2005) Fruit availability and seed dispersal in terra firme forest of Colombian 
Amazonia. Doctoral dissertation, University of Amsterdam, Amsterdam, The Netherlands

Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD (2010) Potential link between plant and fun-
gal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical 
ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542

Pegler DN, Fiard JP (1983) Agaric flora of the Lesser Antilles. HMSO, London
Peñuela-Mora MC (2014) Understanding Colombian Amazonian white sand forest. Doctoral dis-

sertation, Utrecht University, Utrecht
Petersen RH (1988) Notes on clavarioid fungi. XXII. Three interesting South American collec-

tions. Mycologia 80:571–576
Phosri C, Polme S, Taylor AF, Koljalg U, Suwannasai N, Tedersoo L (2012) Diversity and commu-

nity composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand. 
Biodivers Conserv 21:2287–2298

Proradam L (1979) Amazonia Colombiana y sus recursos. IGAC, CIAF, Ministerio de 
Defensa, Bogotá

Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, 
Nardoto GB, Schmerler J, Santos AJ (2010) Variations in chemical and physical properties of 
Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.Reproject.org/

Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the 
wheat from the chaff. Fungal Divers 33:1–45

Roy M, Schimann H, Braga-Neto R, Da Silva RAE, Duque J, Frame D, Wartchow F, Neves MA 
(2016) Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white-
sand forests in Brazil and French Guiana. Biotropica 48:90–100

Simmons C, Henkel TW, Bas C (2002) The genus Amanita in the Pakaraima mountains of Guyana. 
Persoonia 17:563–582

Singer R, Araujo I, Ivory MH (1983) The ectotrophically mycorrhizal fungi of the neotropical 
lowlands, especially Central Amazonia. Nova Hedwig 77:1–352

Smith ME, Henkel TW, Catherine Aime M, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fun-
gal diversity and community structure on three co-occurring leguminous canopy tree species in 
a Neotropical rainforest. New Phytol 192:699–712

Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013) The ectomy-
corrhizal fungal community in a Neotropical forest dominated by the endemic diptero-
carp Pakaraimaea dipterocarpacea. PLoS One 8:e55160. https://doi.org/10.1371/journal.
pone.0055160

Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, 
Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron 
for plant DNA barcoding. Nucleic Acids Res 35:e14

Tedersoo L, Brundrett MC (2017) Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo 
L (ed) Biogeography of mycorrhizal symbiosis. Ecological studies (analysis and synthesis). 
Springer, Cham, pp 407–467

Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and 
novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99. https://
doi.org/10.1038/ismej.2009.131

A. M. Vasco Palacios and T. Boekhout

http://www.reproject.org/
https://doi.org/10.1371/journal.pone.0055160
https://doi.org/10.1371/journal.pone.0055160
https://doi.org/10.1038/ismej.2009.131
https://doi.org/10.1038/ismej.2009.131


77

Tedersoo L, May TW, Smith ME (2010a) Ectomycorrhizal lifestyle in fungi: global diversity, 
distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263. https://doi.
org/10.1007/s00572- 009- 0274- x

Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010b) Low diversity and high host 
preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. 
ISME J 4:465–471. https://doi.org/10.1038/ismej.2009.131

ter Steege H, Sabatier D, Castellanos H, van Andel T, Duivenvoorden J, de Oliveira AA, Ek R, 
Lilwah R, Maas P, Mori S (2000) A regional perspective: analysis of Amazonian floristic com-
position and diversity that includes the Guiana Shield. In: Plant diversity in Guyana. Tropenbos 
series 18. Tropenbos Foundation, Wageningen, pp 19–34

ter Steege H, Henkel TW, Helal N, Marimon BS, Marimon-Junior BH, Huth A, Groeneveld J, 
Sabatier D, Coelho LD, Salomão RP, Amaral IL (2019) Rarity of monodominance in hyperdi-
verse Amazonian forests. Sci Rep 9:1–5

Torti SD, Coley PD, Kursar TA (2001) Causes and consequences of monodominance in tropical 
lowland forests. Am Nat 157:141–153

Uehling JK, Henkel TW, Aime MC, Vilgalys R, Smith ME (2012a) New species of Clavulina 
(Cantharellales, Basidiomycota) with resupinate and effused basidiomata from the Guiana 
Shield. Mycologia 104:547–556. https://doi.org/10.3852/11- 130

Uehling JK, Henkel TW, Aime MC, Vilgalys R, Smith ME (2012b) New species and distribution 
records for Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield, with a key to 
the lowland Neotropical taxa. Fungal Biol 116:1263–1274

UNITE Community (2017) UNITE USEARCH/UTAX release. Version 01.12.2017. UNITE 
Community. https://doi.org/10.15156/BIO/587476

van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolu-
tion: the past, the present, and the future. New Phytol 205:1406–1423

Vargas-Estupiñan N, Chirivi Salomon J, Vasco-Palacios AM, Jiménez P, Restrepo S (2017) 
Macrohongos, Muestreo y preservación. In: Gonzales M, Arenas-Castro H (eds) Recolección 
de tejidos biológicos para análisis genéticos. JAVEGRAF, Bogotá, p 38

Vasco-Palacios AM, Franco-Molano AE, López-Quintero CA, Boekhout T (2005) Macromycetes 
(Ascomycota, Basidiomycota) de la región del medio Caquetá, departamentos de Caquetá y 
Amazonas (Colombia). Biota Colomb 6:127–140

Vasco-Palacios AM, López-Quintero C, Franco-Molano AE, Boekhout T (2014) Austroboletus 
amazonicus sp. nov. and Fistulinella campinaranae var. scrobiculata, two commonly occur-
ring boletes from a forest dominated by Pseudomonotes tropenbosii (Dipterocarpaceae), in 
Colombian Amazonia. Mycologia 106:1004–1014. https://doi.org/10.3852/13- 324

Vasco-Palacios AM, Hernández J, Peñuela-Mora MC, Franco-Molano AE, Boekhout T (2018) 
Ectomycorrhizal fungi diversity in a white sand forest in western Amazonia. Fungal 
Ecol 31:9–18

Vasco-Palacios AM, Bahram M, Boekhout T, Tedersoo L (2019) Carbon content and pH as impor-
tant drivers of fungal community structure in three Amazon forests. Plant Soil 450:111–131

Vilgalys R, Sun B (1994) Assessment of species distributions in Pleurotus based on trapping of 
airborne basidiospores. Mycologia 86:270–274

Wartchow F (2012) Clavulina amazonensis, an Amazonian fungus discovered in the Atlantic 
Forest. Kurtziana 37:113–117

White TJ, Bruns T, Lee SJ, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal 
RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR 
protocols: a guide to methods and applications. Academic Press Inc, San Diego, pp 315–322

Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. 
Mycorrhiza 16(5):299–363

Wilson AW, Aime MC, Dierks J, Mueller GM, Henkel TW (2012) Cantharellaceae of Guyana I: 
new species, combinations and distribution records of Craterellus and a synopsis of known 
taxa. Mycologia 104:1466–1477. https://doi.org/10.3852/11- 412

3 Pseudomonotes tropenbosii, an Endemic Dipterocarp Tree from…

https://doi.org/10.1007/s00572-009-0274-x
https://doi.org/10.1007/s00572-009-0274-x
https://doi.org/10.1038/ismej.2009.131
https://doi.org/10.3852/11-130
https://doi.org/10.15156/BIO/587476
https://doi.org/10.3852/13-324
https://doi.org/10.3852/11-412




79

Chapter 4
Arbuscular Mycorrhizal Fungi 
in the Colombian Amazon: A Historical 
Review

Clara P. Peña-Venegas, Daniela León, and C. Guillermo Bueno

Contents

4.1  Introduction  80
4.1.1  A Historical Approach to Study AMF in the Colombian Amazon Region  81
4.1.2  Molecular AMF Descriptions in the Colombian Amazon  83

4.2  Diversity of AMF of the Colombian Amazon  84
4.3  Diversity Trends of the AM Fungal Communities Along a Biogeographical Gradient  93
4.4  Amazon Deforestation and Changes in AM Fungal Communities  96
4.5  AM Fungal Communities of Two Economically Relevant Euphorbiaceae Native Plants  99
4.6  Knowledge Gaps and Further Recommendations  101
4.7  Conclusions  101
 References  102

C. P. Peña-Venegas (*) 
Instituto Amazónico de Investigaciones Científicas Sinchi, Leticia, Amazonas, Colombia
e-mail: cpena@sinchi.org.co 

D. León 
Instituto Amazónico de Investigaciones Científicas Sinchi, Leticia, Amazonas, Colombia 

Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 
Tartu, Estonia
e-mail: daniela.leon@ut.ee 

C. G. Bueno 
Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu,  
Tartu, Estonia

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
M. A. Lugo, M. C. Pagano (eds.), Mycorrhizal Fungi in South America, Fungal 
Biology, https://doi.org/10.1007/978-3-031-12994-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12994-0_4&domain=pdf
mailto:cpena@sinchi.org.co
mailto:daniela.leon@ut.ee
https://doi.org/10.1007/978-3-031-12994-0_4


80

4.1  Introduction

Arbuscular mycorrhizal fungi (AMF) are one of the most studied symbiotic fun-
gal groups with a widespread global distribution (Smith and Read 2008; Davison 
et al. 2015). Compared to other fungi, AMF diversity estimation tends to be rela-
tively low, which has been argued to be the result of low diversification rates 
(Öpik et al. 2010; Davison et al. 2015; Perez-Lamarque et al. 2020). Besides, the 
study of this group is still troublesome due to the difficulty of delimiting its tax-
onomy, further influencing the quantification of its richness and the construction 
of a robust phylogeny (Perez-Lamarque et  al. 2020; Kolarikova et  al. 2021). 
Despite these issues, around 300 morphologically defined (Öpik and Davison 
2016) and more than 1000 molecularly defined taxa (Öpik et al. 2014) have been 
globally identified.

However, these numbers are not the results of an evenly distributed study of 
global AMF diversity (Davison et al. 2015), since some regions, such as Europe 
and North America, have been more intensively studied compared to tropical 
ones (Öpik et al. 2010; Marin and Bueno 2019). Beyond the sampling bias, it 
is expected that arbuscular mycorrhizal (AM) fungal communities show bio-
geographic differences caused by their limitations for autonomous dispersion, 
their close dependency on host plants, as obligate plant symbionts, and their 
susceptibility to particular environmental factors such as climate and soil prop-
erties (Davison et  al. 2015, 2021; Paz et  al. 2020). Thus, similarly to other 
fungi, soil properties, plant diversity, and climate are expected to be the key 
drivers of AMF variability among different regions (Kivlin et al. 2011; Davison 
et al. 2021).

The Amazon region is recognized as one of the world’s largest and most diverse 
tropical rainforests, with a current alarming decrease in their conservation status 
(Amigó 2020). The diversity of AMF in this particular region has been studied in 
a few locations (Lopes Leal et al. 2009; Stürmer and Siqueira 2011; de Oliveira 
Freitas et  al. 2014; León 2015; Reyes et  al. 2018; Peña-Venegas et  al. 2019), 
although this list is not exhaustive, given that unpublished and “grey” literature in 
the region exists. The Colombian Amazon is one of its most unknown areas  
within the Amazon region  and due to historical, political, and social reasons.  
Consequently, in 1995 the Sinchi Amazonian Institute of Scientific Research of 
Colombia started studying AMF and their symbiosis with plants in this region. The 
Colombian Amazon region covers 483,164 km2 of the upper Northwestern basin, 
representing 10% of the whole Amazon basin (Sinchi 2009). In this area, there are 
different types of soil, going from very weathered and developed soils with low 
fertility such as Arenosols and Podzols (Ultisols in USDA classification), followed 
by acidic infertile Ferralsols (Oxisols in USDA classification) and Cambisols 
(Inceptisols in USDA classification), to the fertile Fluvisols and Anthrosols 
(WRB 2015).

Given the urgent pressure to preserve the Amazon tropical rainforest, a deeper 
understanding of their ecosystems is needed. In this book chapter, we present a 
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historical review of the existing information in the study of AMF in the Colombian 
Amazon. In particular, we review the historical progress of the AM research and 
present novel studies about AMF diversity in the region, analyzing their biogeo-
graphical variation, the effects of deforestation, and the AM association in two 
plant species with a relevant local economic value. Finally, we identified key 
knowledge gaps and developed recommended steps in its further exploration, 
which can ultimately increase our regional functional understanding. Particularly, 
we want to highlight the emerging challenges regarding data and study compat-
ibility in relation to the fast evolution of molecular analytic techniques for this 
fungal group in the last decades. This review expects to be a solid base to build 
future knowledge about this fascinating and relevant group of organisms in 
the Amazon.

4.1.1  A Historical Approach to Study AMF in the Colombian 
Amazon Region

4.1.1.1  Morphological Descriptions in the Colombian Amazon

Colombia was one of the first countries in South America to study AMF. Between 
the 1970s and 1980s, Colombia experienced a boom in the study of AM association 
with the arrival of North American and European researchers focused on improving 
the production of key tropical crops (Sieverding and Leihner 1984a, b; Sieverding 
and Howeler 1985). The first two reports on AMF from the Colombian Amazon date 
from 1988, when the AMF community associations with the native fruit tree “inchi” 
(Caryodendron orinocense) was determined (Pinto 1988; Pinto and Pedraza 1988). 
After this, other studies about the description of AMF community comparing natu-
ral and anthropic disturbed soils (pastures and traditional agriculture) were done in 
the region (Pinto 1992; Peña-Venegas 2001; Restrepo 2006). These five documents 
used classical methodologies to study AMF. The methodologies included the collec-
tion of soils in the field, the isolation of spores from these soils (only Restrepo 2006 
used trap plants for previous multiplication of AMF propagules) by wet sieving and 
centrifugation in a sucrose gradient (Sieverding 1991), and the direct description of 
spores for their taxonomic identification.

These preliminary results indicated for the first time the dominance of the genus 
Glomus in Amazonian soils, now corroborated by other works such as Lopes Leal 
et al. (2013), Peña-Venegas and Vasco-Palacios (2019), and Stürmer and Siqueira 
(2011), which report the presence of the sporocarp-forming species. Additionally, 
these results indicated that the number of AMF spores was higher in places where 
the natural forest was cut down and replaced by pastures than in undisturbed or 
moderately disturbed forests or indigenous shifting cultivation plots. High spore 
numbers in pastures and disturbed ecosystems are consistently reported in Amazon 
soils (Stürmer and Siqueira 2011; Lopes Leal et al. 2013). One possible explanation 
for this pattern might be related to the link between AMF sporulation and soil pH; 
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AMF preferred to sporulate in less acidic soils (Lopes Leal et al. 2013), which cor-
responds consistently to pastures (5.0–5.5 pH values) rather than to more acid forest 
soils (3.5–4.0 pH values).

From 1995 to 2004, the Sinchi Institute devoted its efforts to collecting spores 
from soil samples in the Colombian Amazon and preserving them in slides with 
lactoglycerine and polyvinyl-lactoglycerine. After the collection, the assignment to 
already described AMF morphotypes followed, which was done by using prototypi-
cal spores with clear and key spore characteristics unique to each morphotype as a 
proxy to distinguish AMF taxa. However, the AMF spore morphotypes collected 
included many undetermined morphospores that were not reported in Schenck and 
Perez (1990), considered the most important reference catalogue of the AMF mor-
photype description for Colombia. The two key factors that likely hampered the 
determination of the spore morphotypes to AMF genus and species were (1) the low 
number of spore samples per putative morphotype and (2) the difficulty of obtain-
ing quality spore samples with the distinguishable morphological features needed 
for taxonomic determinations. Those difficulties resulted from the samples being 
collected directly from the soil and, therefore, with different stages of spore devel-
opment. To reduce those problems, the use of trap (trap culture technique) was 
recommended, from which it was possible to obtain enough and fresh AMF spores 
for each particular morphotype (Sieverding 1991). Many (spore) trap cultures using 
Phaseolus vulgaris as a host plant were developed during this time. However, this 
method was very time-consuming and has been a limitation for most mycorrhizal 
researchers, particularly the ones who were not entirely devoted to the description 
of AMF morphotypes. It is important to mention that even if trap culture is a good 
option to multiplicate and obtain young spores, it has some limitations: not all AMF 
species sporulate, the biology of each species could include different physiological 
requirements, and the plant host used could influence AMF sporulation, favoring 
some morphotypes and limiting others (Jansa et  al. 2002; Redecker et  al. 2003; 
Sanders 2004).

In 2005, after the scientific visit to Cuenca’s laboratory at the Instituto Venezolano 
de Investigaciones Científicas (IVIC) in Caracas, Venezuela, many more morphot-
ype identities were reviewed and finally determined. In 2006, as a consequence of 
this collaborative work, including the revision of more than 400 samples, an illus-
trated catalogue with the most common AMF spore morphotypes from the 
Colombian Amazon region was published (Peña-Venegas et al. 2006). This cata-
logue included 31 AMF spore morphotypes: 20 Glomus morphotypes, 5 Acaulospora 
morphotypes, 3 Scutellospora morphotypes, and 1 Archaeospora, Entrophospora, 
and Gigaspora genera morphotype, respectively.

Although these new descriptions were helpful for some morphotypes found in 
the Colombian Amazon, many unidentified morphotypes  remained unknown in 
the Sinchi Institute database. Most unknown morphotypes were from the 
Glomeraceae, the most common and diverse family in the Amazonian soils. 
Glomeraceae is a difficult taxonomic AMF group due to the reduced spore mor-
phological features to differentiate one species from another. Furthermore, 
Glomeraceae was one of the AMF families that were recently reorganized into 14 
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genera (Blaszkowski et al. 2021). The AMF diversity estimation was based only 
on field-collected spores, which were not always in good condition for taxonomic 
descriptions. As each sampling location was normally visited only once, the AMF 
diversity described was based on the sporulating species at that specific moment. 
Additionally, the information about their associated plant species was lacking in 
these spore descriptions from the samples. In this regard, it seems that the com-
monly accepted assumption associating the sporulating rhizospheric AMF with 
the root colonizing AMF may be reconsidered (Saks et al. 2014; Valera-Cervero 
et al. 2015; Peña-Venegas et al. 2019).

4.1.2  Molecular AMF Descriptions in the Colombian Amazon

In the 1990s, molecular techniques to study AMF became more available and started 
to appear in the literature. The first works indicated that the taxonomic classification 
of AMF needed re-evaluation according to the natural phylogenetic organization of 
Glomeromycota (Schüßler et  al. 2001). In the following years, different authors 
made efforts to harmonize molecular and morphological AMF classification to pro-
duce a unique taxonomic key for both spore morphotypes and molecular opera-
tional taxonomic units (OTUs) (Sieverding and Oehl 2006; Spain et al. 2006; Walker 
et al. 2007; Oehl et al. 2008, 2011a, b; Sieverding et al. 2014).

A key step was started in 2004 with the arrival of the student Daniela León to the 
Sinchi Institute. To define a protocol for Amazon soils and obtaining better results 
to estimate AMF diversity, the different molecular methodologies published until 
that time were reviewed and tested. Initially, León tested 14 different protocols, 
including 3 to isolate AMF DNA from spores and 4 protocols to obtain AMF DNA 
from roots. We tested eight specific primers to obtain AMF sequences (ARCH1311; 
ITS4; ITSIF; GLOM5.8R; LETC1670; ACAU1660; GIGA5.8R; and NS5), follow-
ing Redecker (2000) in five different combinations (León 2006). This work made it 
possible for the first time to obtain AMF sequences from manioc (Manihot escu-
lenta) roots. The results indicated that the AMF genera colonizing manioc roots 
(Glomus and Gigaspora) were not always detected from soil samples or/and from 
the morphological descriptions of spores. Moreover, the opposite was also found in 
some genera, such as Acaulospora, which was present in the soil samples but not in 
manioc root samples (León 2006). At that time, the inconsistencies between root 
and soil AMF richness results were commonly attributed to the lack of standardiza-
tion of the molecular protocols. Nowadays, this result (differing root and soil AMF 
communities) can even be expected given a putative selective filtering process of 
plant roots with the soil of AMF communities (Saks et  al. 2014; Valera-Cervero 
et al. 2015).

From 2006 until now, at Sinchi Institute, we have continued using morphological 
methodologies for the taxonomic classification of AMF spore morphotypes, given 
that under certain conditions, it is easier and cost-effective to determine spores with 
particular morphological characteristics. Later, between 2009 and 2010, Öpik and 
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collaborators proposed a new molecular nomenclature for the operational taxo-
nomic units (OTUs) obtained for the Glomeromycota. This new approach to AMF 
taxonomy is based on the idea that those AMF OTUs can be universally identified 
in a standard way, assigning stable and comparable labels among studies, similar to 
the classical taxonomic classification of species. Consequently, a new nomenclature 
of AMF emerged based on virtual taxa (VT), allowing to identify taxonomically the 
specific Glomeromycota sequences found (Öpik et al. 2009, 2010). This methodol-
ogy was then incorporated into the pre-existing traditional methodologies applied at 
Sinchi Institute, greatly complementing the description of AMF in the region.

4.2  Diversity of AMF of the Colombian Amazon

The global analyses of roots and soil with molecular techniques have provided a 
comparison of AMF diversities worldwide. These analyses have indicated that trop-
ical forests exhibit a significantly higher AMF taxonomic richness per plant species 
than temperate forests or habitats under strong anthropogenic influences (Öpik et al. 
2006; Toussaint et al. 2020). The reasons for these patterns are aligned with AM 
symbiosis being one of the oldest plant-fungi mutualist associations (Brundrett and 
Tedersoo 2018), emerging in the Early Devonian period when Earth’s climate 
changed to a tropical wetland condition (Qie et al. 2019). Indeed, temperate and 
warm conditions in the tropics are kept stable all year round. These resemble the 
initial conditions in which AM associations emerged and developed, providing a 
longer stable evolutionary history and thus allowing the development and mainte-
nance of a higher AMF diversity (Toussaint et al. 2020).

The AMF database of the Sinchi Institute (last update: November 2020) includes 
1268 records, among them 855 samples associated with soil-borne spore morphot-
ypes and 413 samples associated with VT; therefore, 70% correspond to informa-
tion coming from soil samples and 30% from root samples. The AMF records 
coming from a molecular analysis in soils and roots varied depending on the 
sequencing method applied (454 pyrosequencing or Illumina sequencing) and on 
the small subunit rRNA (SSU rRNA) primers used to obtain specific AMF sequences, 
either NS31 and AML2 (Simon et al. 1992; Lee et al. 2008) or WANDA and AML2 
(Lee et al. 2008; Dumbrell et al. 2011). The latest updated database information is 
summarized in Table 4.1.

We know that the International Nucleotide Sequence Database Collaboration 
(INSDC) contains a vast amount of AMF sequence data. However, it also contains 
a high non-negligible proportion of erroneous sequences (Nilsson et  al. 2006). 
These sequences do not occur in other curated databases, where data are included 
by expert scientists (Kohout et al. 2014). The presence of many erroneous sequences 
motivated us to use the same sets of primers as other world-leading teams to com-
pare our samples and results with the information published in the MaarjAM data-
base. Then, following a common standard protocol, the VT obtained was matched 
with a sequence similarity of ≥97% against the VT reported in the reference 
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Table 4.1 Sample characteristics to estimate AMF diversity in the Colombian Amazon

Type of 
sample

Samples processed 
from soil-borne 
spore

Samples processed with molecular methodologies

Total

Sequencing methodology
454 Illumina
NS31/
AML2 
primers

NS31/
WANDA 
primers

NS31/
AML2 
primers

NS31/
WANDA 
primers

Soil 
samples

855 37 0 19 126 182

Root 
samples

413 37 0 0 194 231

Total 1268 74 0 19 320 413

MaarjAM database or, in a second stage, with a similarity threshold of 90% against 
sequences published in the INSDC.

Independent of the molecular methodology used to obtain AMF sequences, there 
is no doubt that those sequences corresponded to previously reported AMF. However, 
each methodology and pair of primers will offer a different AMF community com-
position (Dumbrell et  al. 2011; Kohout et  al. 2014; Lekberg et  al. 2018). Thus, 
comparisons of samples are only possible when the same molecular technique and 
the same specific pair of primers are used.

When the AMF diversity estimated by the morphology of soil-borne spores is 
compared to what has been obtained by molecular methodologies, the AMF com-
munity composition can also differ (Table 4.2). The soil-borne spore approach has 
been useful to determine the genus of some morphotypes of the Glomeraceae, 
which molecular techniques have not discriminated. Also, there are AMF species 
described by morphological spore features, which did not include molecular deter-
minations. Some of those morphotypes had limited distributions, and it is difficult 
to find them in cultured collections to determine their sequences. All these have 
motivated using  a combined soil-borne morphological spore approach with a 
molecular one for a complete determination of the AMF community from soil sam-
ples (Oehl et al. 2011a; Öpik and Davison 2016).

It is interesting to observe that independently of the methodological approach 
used to determine the AMF composition of Amazon soils, the coarse composition of 
the AMF community at the genus level is similar. According to previous studies, 
Glomus is the most common genus detected molecularly in tropical soils (Öpik 
et al. 2006), and it is also the most common and diverse genus in Amazon soils.

Although the genus Glomus contains the highest number of described species, it 
is the genus with the smallest proportion of species sequenced for the SSU rRNA 
gene until now (Öpik et al. 2010). For environments rich in Glomus species, it has 
been suggested (Kohout et al. 2014) the use of a set of internal transcribed spacer 
(ITS) family-specific primers, such as those developed by Redecker (2000) and 
Redecker et al. (2003). Also, it has been demonstrated that shorter fragments pro-
duced by the use of SSU global fungal primers, such as NS31 and WANDA, with 
specific primers such as AML2 to target AMF, as used here, exhibited a relatively 
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Table 4.2 Comparison of the AMF community composition of the Colombian Amazon forest by 
a morphological soil-borne spore description and by a molecular VT approach

Methodology Soil-borne spore diversity VT diversity

Genus
Undetermined 
species Determined species

Undetermined 
species

Determined 
species

Acaulospora 19 (7): A. colombiana, 
denticulata, foveata, 
mellea, morrowiae, rehmii, 
tuberculata

15 0

Archaeospora 0 0 9 0
Ambispora 0 (1): A. leptoticha 0 (2): A. fennica, 

leptoticha

Cetraspora 0 (2): C. pellucida, 
spinosissima

0 0

Claroideoglomus 0 (1): C. etunicatum 3 (1): C. 
lamellosum

Diversispora 0 (1): D. tortuosa 3 (1): D. spurca

Funneliformis 0 (2): F. coronatum, 
geosporum

0 0

Gigaspora 4 (1): G. albida 0 (1): G. 
decipiens

Glomus 104 (9): G. clavisporum, 
glomerulatum, magnicaule, 
microaggregatum, 
multicaule, pansihalos, 
reticulatum, rubiforme, 
sinuosum

132 (2): G. 
coremoides, 
proliferum

Kuklospora 0 (1): K. kentinensis 1 0
Paraglomus 0 0 10 (3): P. 

brasilianum, 
laccatum, 
occultum

Rhizophagus 0 (3): R. aggregatum, 
intraradices, manihotis

0 (3): R. clarum, 
intraradices, 
manihotis

Sclerocarpum 0 (1): S. amazonicum 0 0
Scutellospora 3 (7): S. calospora, castanea, 

crenulata, spinosa, 
spinosissima, striata, 
tepuiensis

3 (2): S. 
castanea, 
heterogama

Septoglomus 0 (1): S. constrictum 0 0
Simiglomus 0 (1): S. hoi 0 0
Viscospora 0 (1): V. viscosa 0 (1): V. viscosa
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high-resolution power for the most diverse family (Glomeraceae). However, these 
primers were weaker in delimiting species from less abundant families such as 
Claroideoglomeraceae, Diversisporaceae, or Paraglomeraceae (Kohout et al. 2014). 
In this case, the number of Claroideoglomeraceae, Diversisporaceae, and 
Paraglomeraceae reported so far is low but consistently found in samples from dif-
ferent sites of the Colombian Amazon. Then, it is possible that not all the species of 
Claroideoglomus, Diversispora, and Paraglomus in the soil and root samples col-
lected were detected. However, the proportion of detection of these genera is consis-
tent along the different stocks of samples sequenced, indicating that the abundance/
proportion of these genera might be correct with respect to the other genera found.

When comparing the AMF inventory obtained from the Colombian Amazon with 
previous reports of AMF diversity in the region, we found that many AMF taxa are 
consistently detected and reported (Table 4.3). These AMF species are the target 
ones to develop inoculants for regional agriculture. This type of species selection is 
even more recommended when native Glomus species dominate the region. Some 
of them seem to be the most efficient symbionts for important native crops such as 
the cowpea bean (Vigna unguiculata) (Silva et al. 2018).

Table 4.3 Comparison of reported AMF inventories from the Amazon region

AMF species

This 
chapter 
(Colombia)

Reyes 
et al. 
(2018) 
(Brazil)

Caproni 
et al. 
(2018) 
(Brazil)

de 
Oliveira 
Freitas 
et al. 
(2014) 
(Brazil)

Lopes 
Leal 
et al. 
(2013) 
(Brazil)

Stürmer 
and 
Siqueira 
(2011) 
(Brazil)

Lopes 
Leal 
et al. 
(2009) 
(Brazil)

Acaulospora 
brasiliensis

X

Acaulospora 
bireticulata

X

Acaulospora 
colombiana

X X X X X X

Acaulospora 
delicata

X X X X

Acaulospora 
denticulata

X X

Acaulospora 
elegans

X X X

Acaulospora 
excavata

X

Acaulospora 
foveata

X X X X X X X

Acaulospora 
gedanensis

X X

Acaulospora 
laevis

X X

Acaulospora 
mellea

X X X X X X

(continued)
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Table 4.3 (continued)

AMF species

This 
chapter 
(Colombia)

Reyes 
et al. 
(2018) 
(Brazil)

Caproni 
et al. 
(2018) 
(Brazil)

de 
Oliveira 
Freitas 
et al. 
(2014) 
(Brazil)

Lopes 
Leal 
et al. 
(2013) 
(Brazil)

Stürmer 
and 
Siqueira 
(2011) 
(Brazil)

Lopes 
Leal 
et al. 
(2009) 
(Brazil)

Acaulospora 
morrowiae

X X X X X X

Acaulospora 
paulinae

X

Acaulospora 
polonica

X

Acaulospora 
reducta

X

Acaulospora 
rehmii

X X X X X X X

Acaulospora 
scrobiculata

X X X X X X

Acaulospora 
spinosa

X X X X X

Acaulospora 
tuberculata

X X X X X

Acaulospora 
walkeri

X

Ambispora 
appendiculata

X X X

Ambispora 
fennica

X

Ambispora 
leptoticha

X X X X X

Archaeospora 
trappei

X X X X

Cetraspora 
pellucida

X X X

Cetraspora 
spinosissima

X

Claroideoglomus 
claroideum

X X

Claroideoglomus 
drummondii

X

Claroideoglomus 
etunicatum

X X X X

Claroideoglomus 
lamellosum

X

Claroideoglomus 
luteum

X

Dentiscutata 
scutata

X

(continued)
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Table 4.3 (continued)

AMF species

This 
chapter 
(Colombia)

Reyes 
et al. 
(2018) 
(Brazil)

Caproni 
et al. 
(2018) 
(Brazil)

de 
Oliveira 
Freitas 
et al. 
(2014) 
(Brazil)

Lopes 
Leal 
et al. 
(2013) 
(Brazil)

Stürmer 
and 
Siqueira 
(2011) 
(Brazil)

Lopes 
Leal 
et al. 
(2009) 
(Brazil)

Diversispora 
eburnea

X

Diversispora 
pustulata

X

Diversispora 
spurca

X X

Diversispora 
versiformis

X

Diversispora 
tortuosa

X X X

Enthrophospora 
infrequens

X X X

Funneliformis 
badium

X

Funneliformis 
coronatum

X

Funneliformis 
geosporum

X X X X X

Funneliformis 
halonatum

X

Fuscutata 
heterogama

X X

Gigaspora albida X
Gigaspora 
decipiens

X

Gigaspora 
gigantea

X

Gigaspora 
margarita

X X X

Gigaspora rosea X
Glomus 
ambisporum

X X

Glomus atrouva X X
Glomus australe X X
Glomus brohultii X
Glomus 
caledonium

X

Glomus 
claroideum

X

Glomus 
clavisporum

X X X

Glomus 
coremoides

X X

(continued)
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Table 4.3 (continued)

AMF species

This 
chapter 
(Colombia)

Reyes 
et al. 
(2018) 
(Brazil)

Caproni 
et al. 
(2018) 
(Brazil)

de 
Oliveira 
Freitas 
et al. 
(2014) 
(Brazil)

Lopes 
Leal 
et al. 
(2013) 
(Brazil)

Stürmer 
and 
Siqueira 
(2011) 
(Brazil)

Lopes 
Leal 
et al. 
(2009) 
(Brazil)

Glomus 
corymbiforme

X X

Glomus 
diaphanum

X X

Glomus 
etunicatum

X

Glomus 
formosarum

X

Glomus 
fuegianum

X

Glomus 
glomerulatum

X X X X X

Glomus 
heterosporum

X

Glomus 
inviernanum

X

Glomus lacteum X X
Glomus 
macrocarpum

X X X X

Glomus 
magnicaule

X X X

Glomus 
microaggregatum

X X

Glomus 
microcarpum

X X

Glomus minutum X
Glomus 
multicaule

X

Glomus 
nanolumen

X X

Glomus occultum X
Glomus 
pansihalos

X

Glomus 
proliferum

X

Glomus 
reticulatum

X X

Glomus 
rubiforme

X X X

Glomus spinosum X
Glomus sinuosum X X X
Glomus 
taiwanensis

X

(continued)
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Table 4.3 (continued)

AMF species

This 
chapter 
(Colombia)

Reyes 
et al. 
(2018) 
(Brazil)

Caproni 
et al. 
(2018) 
(Brazil)

de 
Oliveira 
Freitas 
et al. 
(2014) 
(Brazil)

Lopes 
Leal 
et al. 
(2013) 
(Brazil)

Stürmer 
and 
Siqueira 
(2011) 
(Brazil)

Lopes 
Leal 
et al. 
(2009) 
(Brazil)

Glomus 
tenebrosum

X

Glomus 
trimurales

X

Glomus trufemii X
Kuklospora 
kentinensis

X

Orbispora 
pernambucana

X

Pacispora 
robigina

X

Paraglomus 
brasilianum

X

Paraglomus 
laccatum

X

Paraglomus 
occultum

X X X

Racocetra 
castanea

X

Racocetra 
weresubiae

X

Rhizophagus 
aggregatum

X

Rhizophagus 
clarum

X X X X X

Rhizophagus 
intraradices

X X X X

Rhizophagus 
invernianum

X

Rhizophagus 
manihotis

X

Sclerocarpum 
amazonicum

X

Scutellospora 
arenicola

X

Scutellospora 
biornata

X X

Scutellospora 
calospora

X X X

Scutellospora 
castanea

X

Scutellospora 
cerradensis

X

(continued)
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Table 4.3 (continued)

AMF species

This 
chapter 
(Colombia)

Reyes 
et al. 
(2018) 
(Brazil)

Caproni 
et al. 
(2018) 
(Brazil)

de 
Oliveira 
Freitas 
et al. 
(2014) 
(Brazil)

Lopes 
Leal 
et al. 
(2013) 
(Brazil)

Stürmer 
and 
Siqueira 
(2011) 
(Brazil)

Lopes 
Leal 
et al. 
(2009) 
(Brazil)

Scutellospora 
dipurpurescens

X

Scutellospora 
heterogama

X

Scutellospora 
persica

X

Scutellospora 
scutata

X X

Scutellospora 
spinosa

X

Scutellospora 
striata

X

Scutellospora 
tepuiensis

X

Septoglomus 
constrictum

X

Simiglomus hoi X
Viscospora 
viscosa

X

The molecular approaches applied to study AMF have shown remarkable 
determinations of the Glomeromycota fungal group. However, the molecular 
techniques have determined differences in the small subunit ribosomal RNA (SSU 
rRNA) genes of these fungi based on different types of polymerase chain reaction 
(PCR) sequencing, which has been changing rapidly in the last decade. For exam-
ple, three different sequencing methods have been used to study Glomeromycota 
at the molecular level during the last decade: first-generation sequencing or Sanger 
sequencing; 454; and Illumina next-generation sequencing (Raza and 
Ahmad 2016).

Vasar et al. (2017) demonstrated that 454 and Illumina Miseq sequencing offered 
similar AM fungal richness results. This similarity, in principle, might allow us to 
compare results between these two sequencing methodologies. However, different 
sets of primers target different AM fungal genomic regions capturing different AM 
fungal community compositions. Therefore, the results obtained from samples that 
used the same sequencing methodology but a different set of primers seem to have 
weak comparability (Lekberg et al. 2018). However the differences in results caused 
by the use of different sequencing methods or different sets of primers do not seem 
to meaningfully affect the AM fungal community structure and its responses to the 
environment (Lekberg et  al. 2018). This result suggests a promising avenue for 
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using historical datasets (such as the one built in the Colombian Amazon) to evalu-
ate past, current, and future regional trends.

Taking into consideration the overall conceptual and technical limitations of the 
results obtained from different molecular methodologies, we want to show the inter-
esting diversity trends of the Colombian Amazon region obtained so far. These 
trends can be considered the base for future hypotheses, which should be further 
tested with information collected and processed in a more standardized way.

4.3  Diversity Trends of the AM Fungal Communities Along 
a Biogeographical Gradient

The Colombian Amazon corresponds to a portion of the upper northwestern Amazon 
basin. From the northwestern (NW) to the northeastern (NE) region of the Colombian 
Amazon, a biogeographical gradient is defined by three main factors (Fig.  4.1). 
From NW to NE, (1) altitude changed from 1000 to 95 m above sea level, (2) the 
soil texture changed from dominated limed-clayed soils to sandier soils, and (3) 
natural vegetation changed from the typical tropical rain upland forest with high 
plant diversity to a shorter forest with lower diversity. In particular, the vegetation 

Fig. 4.1 Map of the Colombian Amazon region indicating the origin of soil samples used to study 
changes in the AMF community composition along a biogeographical gradient. Colors correspond 
to particular landscapes with different soil types: hills with Cambisols (orange) where rubber trees 
(R) were also collected, Amazonian planes with Ferralsols and Fluvisols in the alluvial valleys 
(green) where manioc (M) were also collected, and savannas with Arenosols and Podzols (yellow). 
Anthrosols are not shown
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changes from the tropical rain upland forest, with tall trees (35 m on average) and a 
closed canopy growing between a dense undergrowth forest (IGAC 1979) and a for-
est with trees around 10–20 m. tall, growing on a shallow sandy podzolized soil and 
influenced by the Guiana shield formation. These short forests are also associated 
with natural savannas of white sands in an almost plain flat landscape.

We selected soil samples from the Sinchi database collected from native Amazon 
forests in four states located along the biogeographical gradient from the NW 
(Amazonas and Caquetá states) to the NE (Guainía and Vaupés states) of the 
Colombian Amazon region. According to the coordinates of the soil samples 
selected, we filtered those locations in the Colombian Amazonian Herbarium 
(COAH) database to obtain information on the plant community composition of 
each studied area. The resulting VT richness and plant species richness were 
grouped by state. Rarefaction curves were performed previously to AMF informa-
tion to check whether the number of soil samples selected was enough and represen-
tative of the AM fungal community for each state (Fig.  4.2). Given that the 
rarefaction results indicate similar curves, we proceed to analyze the correspon-
dence between plants and AM fungi.

Shannon and Simpson indexes of AM fungal diversity showed that soils from the 
NW were more diverse (Shannon index varies between 1.98 and 1.27; Simpson 

Fig. 4.2 Rarefaction (taxon accumulation) curves of AMF of the northwestern states (Amazonas 
and Caquetá, in black and red lines, respectively) and northeastern states (Guainía and Vaupés, 
green and blue lines, respectively) of the Colombian Amazon region
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Fig. 4.3 Venn diagrams indicating the number of (a) AMF VT and (b) plant species shared among 
northwestern (Amazonas and Caquetá) and northeastern (Guainía and Vaupés) states of the 
Colombian Amazon region

index, 0.78) than soils from the NE (Shannon index varies between 1.04 and 0.97 
and Simpson index between 0.54 and 0.45).

AM fungal and plant communities showed a very contrasted pattern along the 
biogeographical gradient in the different states (Fig. 4.3). Plant communities dif-
fered with more than 51% exclusive plant species in each state, even in soils with a 
similar composition (Fig. 4.3a). Few plant species (38% of total plant species) and 
few AM fungal VT (35% of the total VT found) were consistently present along the 
soil gradient. However, dissimilarities among plant communities and AM fungal 
communities did not follow similar patterns (Fig. 4.4).

AM fungal communities from well-preserved Amazon ecosystems could vary 
even if soil or plant communities are similar. On one hand, areas with contrasting 
plant community compositions shared similar AM fungal communities as occurred 
between Guainía and Vaupés states. On the other hand, Amazonas and Caquetá 
states had different plant communities and different AM fungal communities. 
Additionally, the AM fungal taxa that dominated each studied area (state) were dif-
ferent (Table 4.4). Results indicated that the NW of the Amazon region is dominated 
by the Glomus genus, while in NE, Acaulospora became a relevant genus in the AM 
fungal community composition, as reported by some researchers for Amazon soils 
of Brazil (Lopes Leal et al. 2013).

These results indicated that the portion of the Amazon region sampled is hetero-
geneous and that abiotic factors might have a stronger influence on the AM fungal 
community composition than biotic factors (e.g., plant composition). These results 
support the idea that dominant AM fungi are context-dependent (Dumbrell et al. 
2010), and therefore dominating AM fungal community along the Amazon region is 
unexpected.
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Fig. 4.4 Proportions of AMF (a) and plant communities (b) among four states of the Colombian 
Amazon region located along a biogeographical gradient

4.4  Amazon Deforestation and Changes 
in AM Fungal Communities

The Colombian Amazon region, like most of the tropical forests of the world, is 
experiencing an increasing rate of deforestation. According to monitoring data of 
the Colombian Amazon region, between 2016 and 2018, the average annual rate of 
deforestation was 119.5 hectares, with an average annual rate of transformation of 
212 hectares per year (SIAT-AC 2020). Most of these deforested areas were trans-
formed into pastures for cattle production, becoming the main economic activity.
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Table 4.4 Arbuscular mycorrhizal fungal taxon with the highest number of sequence reads in the 
four Colombian Amazon states studied

Amazonas Caquetá Guainía Vaupés
VT Reads VT Reads VT Reads VT Reads

Glomus 
VTMO-G74

1253 Glomus 
VT269

5787 Acaulospora 
VT102

4918 Claroideoglomus 
VTLH-Cl01

2528

Glomus 
VT126

1132 Glomus 
VT92

4356 Acaulospora 
VT24

1860 Paraglomus 
VT444

1498

Glomus 
VT183

510 Glomus 
VTGCl-2

2125 Glomus VT360 1353 Acaulospora 
VT24

605

Glomus 
VT80

296 Glomus 
VT292

1688 Claroideoglomus 
VTLH-Cl01

570 Glomus VT80 394

Glomus 
VT89

295 Glomus 
VT79

1174 Acaulospora 
VT231

569 Glomus VT70 365

As it was mentioned before, Amazon soils are highly weathered and nutrient- 
poor. Their fertility depends on the efficient cycling of organic matter coming 
mainly from forest litter inputs. Once the natural forest is removed, litter inputs 
disappear, and soil degradation begins. Initial pastures consume the nutrient stocks 
produced previously by forests. However, after a couple of years, the soils become 
unfertile and unproductive, often with high aluminum toxicity and severe phospho-
rus and nitrogen deficiency (Matschullat et al. 2020).

In the case of the Amazon region, most of the native forest is replaced by 
Brachiaria decumbens, an exotic grass species that is highly mycotrophic (Siqueira 
and Saggin-Junior 2001). The replacement of the natural cover and the cattle graz-
ing activity affect the AM communities and the plant-fungus symbiotic relationship 
in different ways. AM fungal sporulation increases in pastures, responding to a 
change in soil pH (less acidic) (Lopes Leal et al. 2013) and new biotic stress (Yang 
et al. 2020), as native forests with low to moderate grazing levels are transformed 
into a heavily grazed grassland. Grazing itself directly causes plant stress because 
of the reduction of photosynthetic biomass, affecting the available nutrient exchange 
between the host plant and the symbiotic fungus. This is even more intense in host 
plants with high mycorrhizal dependency (van der Heyde et  al. 2017, 2019). 
However, a reduction of plant stress caused by herbivory can also be mediated by 
AMF (Frew et al. 2022). Additionally, the composition of AM fungal communities 
in pastures can differ from native forest soils (Lopes Leal et al. 2013; Barraclough 
and Olsson 2018), which tend to be mostly dominated by no more than three fungal 
species (Stürmer and Siqueira 2011). Unfortunately, studies using molecular tools 
to analyze the changes in AM fungal soil communities caused by the transformation 
of native forests into pastures in the Amazon region are not yet available.

In addition, we wanted to apply molecular methodologies to evaluate whether 
the results of previously observed changes might differ according to the methodol-
ogy used. Our preliminary results indicated that spore abundance was directly 
related to the abundance of sequences of AM fungi found in the soil, but not with 
AM fungal richness (Table  4.5), where pastures and native forests were similar. 
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Table 4.5 AMF abundance, richness, and the five more representative virtual taxa (VT) in pastures 
and native forest soils in the Colombian Amazon region

Pasture Native Amazon forest

Abundance (reads) 2874 107
Richness (No. VT) 18 17
1 Glomus VT126 Glomus VT359
2 Glomus VT60 Glomus VT126
3 Glomus VT89 Glomus VT292
4 Glomus VT70 Paraglomus VT444
5 Glomus VT398 Glomus VT79

Fig. 4.5 Proportion of genera of arbuscular mycorrhizal fungi in pasture soils and native Amazon 
forest soils obtained by molecular techniques

However, the AM fungal community composition differed. Both pastures and native 
forests were composed mainly of Glomeraceae VT. However, pasture soils were 
dominated by Glomus species. At the same time, native forest soils also included 
Paraglomus as an important genus in its AM fungal community composition 
(Fig. 4.5). Glomus is generally more resistant to many kinds of disturbance in com-
parison with other genera (van der Heyde et al. 2017) and is very competitive colo-
nizing roots due to the high number of propagules that produce (Klironomos and 
Hart 2002), and therefore, Glomus is more common in disturbed ecosystems such 
as those introduced pastures.

The genus Paraglomus is commonly abundant in tropical forest ecosystems 
(García de León et al. 2017; Marinho et al. 2018; Peña-Venegas et al. 2021), which 
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explains why it became an important genus in the AM fungal composition of the 
Amazon forest.

Interestingly, we found more AMF in pasture soils than in forest soils, in agree-
ment with previous observations where AM fungal richness depended on the level 
of disturbance and the soil and root matrices (García de León et al. 2017). Higher 
AMF richness tends to occur in soils of disturbed ecosystems, unlike in natural 
ecosystems. On the contrary, in conserved ecosystems, AM fungal richness is higher 
in the roots than in the soils. This can indicate an AMF survival strategy to explore 
and wait for better conditions and maybe better host plants. In conserved ecosys-
tems, a higher AM fungal richness occurred in the plant roots, suggesting a more 
stable habitat condition.

Evidencing particular differences in the AM fungal composition between native 
Amazon forest soils and pasture soils at the Glomeraceae level was only possible 
through molecular tools. In this case, the molecular approach offered a more detailed 
resolution to discriminate the taxonomy of sequences from AMF with genera shar-
ing spore morphotype similarities than the morphological approach in which this 
taxonomical resolution is not evident.

4.5  AM Fungal Communities of Two Economically Relevant 
Euphorbiaceae Native Plants

The Amazon region has provided the world with economically relevant species, 
including some crops worldwide distributed, such as manioc (Manihot esculenta), 
also known as cassava. Consequently, this region has been recognized as a domes-
tication hotspot, giving additional importance to crops such as “cocoa” (Theobroma 
cacao) and “copoazu” (Theobroma grandiflorum); many “chiles” varieties 
(Capsicum sp.); different pineapple varieties (Ananas comosus); “avocado” (Persea 
americana); peanut (Arachis hypogaea); “cocona” (Solanum sessiliflorum); “camu 
camu” (Myrciaria dubia); palm fruits rich in proteins such as peach palm (Bactris 
gasipaes) and asai palm (Euterpe precatoria); colorants such as annatto (Bixa orel-
lana); stimulant plants such as “coca” leaves (Erythroxylum coca) and “guaraná” 
(Paullinia cupana), as well as medicinal plants such as cat’s claw (Uncaria tomen-
tosa) and “ayahuasca” (Banisteriopsis caapi); and significant plant species for 
industry, such as the rubber tree (Hevea brasiliensis) (Schultes 1979; Clement 1999; 
Simpson and Ogorzaly 2014).

In the last 10 years, the Sinchi Institute has studied the AM association in two 
important native Euphorbiaceae plants: manioc and rubber tree. These studies 
included molecular approaches to determine the AM fungal species associated with 
the roots of these species. We took a subset of the AM fungal database to compare 
the AM fungal communities in the roots of these two plant species from mature 
plants in productive agrosystems. We included data from four different native man-
ioc landraces (Peña-Venegas et al. 2019) cultivated in shifting agriculture plots on 
three different soil types. Mycorrhized root samples were obtained at the moment of 
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Table 4.6 AM fungal community colonizing roots of two Euphorbiaceae species

VT Genus Species
Percentage of sequence reads
Manioc % Rubber tree %

VTX00090 Rhizophagus manihotis 16,505 20.76 12,830 10.42
VTX00280 Glomus sp. 12,873 16.19 22,831 18.54
VTX00126 Glomus sp. 8,980 11.29 4,722 3.83
VTX00093 Glomus sp. 6,977 8.77 6,562 5.33
VTX00270 Glomus sp. 6,336 7.97 2,729 2.22
VTX00024 Acaulospora sp. 5,081 6.39
VTX00082 Glomus sp. 4,877 6.13
VTX00312 Glomus sp. 2,633 3.31 13,122 10.65
VTX00420 Glomus sp. 2,567 3.23
VTX00108 Glomus sp. 2,375 2.99 1,987 1.61
VTX00268 Glomus sp. 1,872 2.35 1,210 0.98
VTX00264 Rhizophagus clarum 1,248 1.57 1,595 1.29
VTX00418 Glomus sp. 1,175 1.48
VTX00092 Glomus sp. 1,121 1.41
VTX00070 Glomus sp. 1,107 1.39
VTX00089 Glomus sp. 896 1.13 1,516 1.23
VTX00028 Acaulospora sp. 878 1.10
VTX00269 Glomus sp. 806 1.01
VTX00248 Glomus sp. 605 0.76
VTX00227 Acaulospora sp. 602 0.76
VTX00403 Glomus sp. 11,195 9.09
VTX00076 Glomus sp. 9,305 7.55
VTX00223 Glomus sp. 7,632 6.20
VTX00444 Paraglomus sp. 6,944 5.64
VTX00096 Glomus sp. 4,247 3.45
LH-Gl07 Glomus sp. 3,751 3.05
VTX00099 Glomus proliferum 3,553 2.88
VTX00363 Glomus sp. 2,947 2.39
VTX00069 Glomus sp. 2,864 2.33
VTX00364 Glomus sp. 1,631 1.32
Total 79,514 100 123,173 100

manioc harvesting. For the rubber tree, we included data from 19 different rubber 
clones (nine native clones and ten introduced clones) cultivated in clonal banks in 
four different soil types (Peña-Venegas et al. 2021). Mycorrhized root samples were 
obtained from 9-year-old rubber trees. The locations where manioc and rubber tree 
root samples were collected are far away from each other (see Fig. 4.1). To compare 
AMF communities in the roots of these two plant species, we selected the twentieth 
most frequent AMF associated with the roots of each plant species.

Our results showed that the two species shared 50% of the total AM fungal com-
munity in their roots (Table 4.6). Four AM fungal virtual taxa were found in the 
tenth most frequent VT colonizing the roots of the two species, representing 51.55% 
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of the total AM fungal community for manioc and 43.44% of the total AM fungal 
community for the rubber tree.

These results indicate that despite soil conditions and biogeographic areas are 
not similar, the phylogenetic relationship between both crops might have an impact 
on their symbiotically associated communities. The host specificity for AMF has 
commonly been considered weak. However, some degree of plant-AMF specificity 
has been observed at plant species and functional or ecological plant group levels 
(Helgason et al. 2007; Öpik et al. 2009; Sepp et al. 2019).

Our results, contrary to previous reports, indicate that some plant-fungi specific-
ity might also occur at higher phylogenetic levels (e.g., plant family level), indepen-
dently of the location where they are cultivated. These results  open the door to 
studying new scenarios where plant-AMF specificity could occur. However, many 
critical aspects are still unknown, for instance: How does this AM fungal composi-
tion respond to a disturbing effect rather than to a plant-fungal interaction? What is 
the function of the shared vs. exclusive AM fungal community? Which of those 
(shared vs. exclusive) are more relevant for agriculture in terms of soil health and 
plant productivity? Future analyses of these aspects will warrant improvements in 
the way these crops are currently planned and developed.

4.6  Knowledge Gaps and Further Recommendations

The AM research developed in the Colombian Amazon presented in this book chap-
ter indicates that there are still many relevant knowledge gaps to study, in particular, 
considering the immediate and drastic threats the Amazon basin, as a key global 
ecosystem, is currently facing (Malhi et al. 2008; Davison et al. 2012), specifically, 
the alarming rate of deforestation and land use change, expanding the land for inten-
sively managed crops and grazing areas. A basic understanding of the complete 
composition of the AM fungal communities (Fitter et al. 2004), along with more 
profound knowledge about their crucial ecosystem multifunctionality (Ryan and 
Graham 2018), and the resilience of the AM symbiosis to climate change is highly 
desirable to make decisions about the future of the Amazon basin (Silva-Flores et al. 
2021). These decisions should include a substantial increase in research from 
simple experiments comparing the composition of different land use within a terri-
tory to macroecological and biogeographic studies on the diversity and distribu-
tion of AMF.

4.7  Conclusions

The study of biological communities, including AMF in environments difficult to 
access as the Amazon basin, is favored by the presence of permanent research insti-
tutions in the region, such as the Sinchi Institute in the Colombian Amazon. After 
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more than 20 years of work on AM fungal communities in the Colombian Amazon, 
more complete inventories of this fungal group were developed, contributing to the 
knowledge of the AMF diversity of the region. The results of this research indicate 
a moderate AMF diversity in the region. However, the functional roles of these 
AMF seem to be relatively important given their relevance in nutritional functions 
for natural and valuable cultivated plants. The fast evolution of the methodologies 
to study AMF, especially those based on molecular techniques, limits the analysis of 
historical information. More research is needed, but it is the Academy that must 
soon solve these constraints to advance in the interpretation of the information 
obtained until now. There had been less evidence of the effects of deforestation and 
land use changes in the region in communities of microorganisms as the essential 
elements of the functioning ecosystem, for instance, AM symbiosis and AMF 
change with deforestation and the transformation of natural forest into agricultural 
plots or pastures. Although AMF show a good resilience capacity to environmental 
disturbance, changes in their community composition are not well understood in 
terms of their ecological functions, the restoration of natural ecosystems, the pro-
ductivity of native and introduced crops, and their efficiency as mutualistic symbi-
onts. Gaps indicated that the Amazon region would continue to be a fascinating 
tropical environment to study AMF and the AM symbiosis.
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5.1  Introduction

In the face of increasing deforestation of tropical forests, agroforestry represents a 
promising strategy for forest conservation that reconciles the development of a sus-
tainable agricultural activity with the conservation of biodiversity and the mainte-
nance of the environmental functions of forests. In this type of land management, 
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woody species are combined temporal or spatially with crops, creating diversified 
production systems in the same terrain (Farfán-Valencia 2007). Coffee and cacao 
are the most widely used agroforestry crops, covering a large part of the world agro-
forestry surface and together represent the second largest export product of develop-
ing countries (De Beenhower et al. 2013). In South America, these products come 
from the tropical region of the subcontinent, being Brazil, Colombia, Ecuador, and 
Perú the most important producers (FAO 2021).

In their traditional agroforestry management, these crops are grown under a can-
opy composed of a high diversity of native shade trees along with introduced timber 
and fruit trees. This type of agroforestry system preserves diversity levels relatively 
similar to those of natural forests and maintains many of their environmental func-
tions, which include water conservation, erosion reduction, and carbon sequestra-
tion that contribute to climate change mitigation (De Beenhower et  al. 2013). 
Additionally, shade trees buffer climatic extremes and provide large amounts of 
organic matter, maintaining soil fertility thanks to the action of a diverse community 
of microorganisms that participate in nutrient cycling and plant nutrition (Schroth 
and Krauss 2006).

Within this group of microorganisms, arbuscular mycorrhizal fungi (AMF) play 
an important role in nutrient recirculation, which is crucial for the functioning of 
these agroecosystems. Mycorrhizal symbiosis is formed by around 80% of vascular 
plants, increasing water and low-mobile nutrient uptake in soils, particularly phos-
phorus (P), by means of an extensive mycelial network that explores a greater soil 
volume than the one reached by plant roots (Cuenca 2015). AMF hyphae have been 
found profusely colonizing leaf litter (Cuenca et al. 1983), and, although a direct 
saprophytic activity has not been demonstrated, they may induce a faster decompo-
sition rate through microorganisms present in the hyphosphere (Díaz-Ariza et al. 
2020). The hyphal network is able to uptake and transfers to the plant, in very effi-
cient way, the mineralized nutrients reducing their loss by leaching or fixation in the 
soil. Besides the nutritional benefits, AMF provide increased resistance to patho-
gens, drought, and heavy metal contamination, improving soil structure through the 
join actions of the external mycelium and glomalin production (Cuenca 2015).

Both coffee and cacao are highly mycotrophic plants (Cuenca et al. 1990; Cogo 
et al. 2017; Paguntalan et al. 2020) that depend on mycorrhizal fungi for their devel-
opment. Also, within the shade trees present in agroforestry systems, woody 
legumes are highly dependent on mycorrhizas due to their high phosphorous 
requirement demanded by their association with nitrogen-fixing bacteria (Atangana 
et al. 2014). In fact, the so-called tripartite symbiosis (legumes, mycorrhizas, and 
nitrogen-fixing bacteria) is fundamental for the maintenance of these agroecosys-
tems, taking into account that nutrients extracted in each harvest can be compen-
sated by the nutrient input of the nitrogen-rich leaf litter produced by these trees 
(Cuenca 2015). This delicate equilibrium of biological interactions is unbalanced 
when agronomic practices are intensified (e.g., reduction of shade trees and increase 
of agrochemical application) and, although it increases yields in the short term, 
eventually leads to soil degradation and a progressive loss of soil fertility (Schroth 
and Krauss 2006). Intensification of agronomic practices significantly reduces AMF 
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diversity and thus the multiple benefits provided by this symbiotic association (Oehl 
et al. 2010). In this case a great part of the chemical fertilizers are lost by leaching, 
being a management system highly polluting and inefficient in terms of nutrient use 
(Wang et al. 2009).

The certification of coffee and cacao as biodiversity-friendly organic products 
provides better market prices for these crops and represents a successful strategy to 
promote the reduction of agrochemical use and the conservation of a more diverse 
tree canopy. The sowing of a higher diversity of woody tree species and the organic 
conversion of full-sun plantations to shaded ones are practices that are being pro-
moted to recover the productivity and natural fertility of degraded soils (Torres et al. 
2008; Vanhove et  al. 2016). Despite the growing recognition of the potential of 
mycorrhizal symbiosis to increase the productivity and sustainability of crops, this 
issue is generally neglected in management practices. In general, there is a lack of 
information to select both the appropriate mycorrhizal inoculants to be applied and 
the adequate agronomical practices for the conservation of native AMF communi-
ties. The aim of this chapter is to present the information available regarding i) AMF 
species associated to coffee and cacao crops in South America; ii) the effect of 
agroforestry practices on AMF communities; and iii) the influence of AMF diversity 
on the productivity of these crops.

5.2  AMF Diversity Associated with Coffee and Cacao

The structure of AMF communities is influenced by biotic and abiotic external fac-
tors and by intrinsic characteristics of these fungi, such as their dispersal abilities 
and other life history traits (Chaudhary et al. 2008). In addition to climatic factors 
such as temperature, light, and humidity, soil properties (pH, texture, organic mat-
ter, and nutrients) are abiotic variables that strongly influence the distribution of 
AMF (Oehl et al. 2010; Herrera-Peraza et al. 2011). Among the biotic factors, the 
compatibility of host-symbiont interaction influences the mycorrhizal response of 
host plants and the structure of AMF communities colonizing their roots (Scheublin 
et al. 2004; Stevens et al. 2020).

Most of the studies describing the AMF community associated with a particular 
plant are based on the morphological analysis of the spores present in the rhizo-
spheric soil. Spore-based identification has limitations since not all fungi present 
may be sporulating at the time of sampling and may overestimate the abundance of 
species with higher sporulation rates (Bever et al. 2001); however, it is still the most 
widely used method due to its greater accessibility. Molecular methods can detect a 
greater diversity of AMF and identify which species are colonizing host plant roots, 
but their application in the South American region is still limited (Cofré et al. 2019).

In this work, the available information about the diversity of AMF associated 
with coffee and cacao was collected from articles published between 1990 and 2021 
obtained through searches in Google Scholar containing the combination of terms 
“arbuscular mycorrhizal fungi,” “cacao or coffee,” “Coffea arabica or Theobroma 
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Table 5.1 AMF species present in coffee and cacao plantations according to the review carried out 
for South America

AMF Coffee Cacao

Acaulosporaceae 29 18
Acaulospora alpina COL
Acaulospora bireticulata BRA
Acaulospora brasiliensis PER
Acaulospora capsicula COL VZL
Acaulospora cavernata COL
Acaulospora colombiana BRA/COL COL
Acaulospora delicata VZL
Acaulospora denticulata BRA/COL
Acaulospora elegans COL/PER
Acaulospora excavata PER BRA/VZL
Acaulospora flava PER
Acaulospora fragilissima PER
Acaulospora foveataa BRA/COL/PER BRA/COL/ECU/VZL
Acaulospora gedanensis BRA
Acaulospora herrerae BRA/PER BRA
Acaulospora kentinensis COL/PER PER
Acaulospora lacunosa PER

(continued)

cacao,” and “country name” in South America. From the gathered studies, those 
that included presence records of AMF taxonomically identified to species level 
were selected (21), which were carried out in Brazil (8), Perú (6), Colombia (4), 
Venezuela (2), and Ecuador (1). The number of studies for each crop was similar 
(11–10); however, for coffee, three of the studies conducted in Brazil were review 
articles, so the information available for this crop in this country is significantly 
greater. The classification proposed by Redecker et al. (2013) and the list of species 
at http://www.amf-phylogeny.com/amphylotaxonomy.html published by 
A. Schüßler (updated November 29, 2021) were used to detect synonyms and unify 
the nomenclature.

The information obtained about the occurrence of AMF in coffee and cacao 
agroecosystems in the South American region is summarized in Table 5.1. According 
to this inventory, there is a high diversity of AMF in these agroecosystems, with a 
total of 121 species recorded, 104 species in coffee and 67 species in cacao. The 
greater sampling effort made for coffee could explain the high number of species 
recorded for this crop compared to cacao, which is similar to that reported for coffee 
agroecosystem worldwide (>100 species) (Hernández-Acosta et  al. 2021). The 
AMF species found in coffee plantations belonged to eight families, mainly concen-
trated in Glomeraceae (33%), Acaulosporaceae (28.2%), and Gigasporaceae 
(20.4%), with the remaining 18.4% in other families. In cacao, nine families were 
present, being Glomeraceae (37.3%), Acaulosporaceae (26.95%), and Gigasporaceae 
(10.4%) the best represented families, with 25.4% belonging to other families.
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Table 5.1 (continued)

AMF Coffee Cacao

Acaulospora laevis BRA/COL/PER
Acaulospora longula BRA/COL BRA/PER
Acaulospora melleaa BRA/COL/PER BRA/COL/PER/VZL
Acaulospora morrowiae BRA/COL/PER BRA/VZL
Acaulospora nivalis BRA
Acaulospora paulinae COL
Acaulospora punctata PER
Acaulospora rehmii COL/PER PER/VZL
Acaulospora rugosa PER
Acaulospora scrobiculataa BRA/COL/PER/VZL BRA/PER/ECU/VZL
Acaulospora sieverdingii BRA
Acaulospora spinosa BRA/COL/PER PER/VZL
Acaulospora spinosissima PER PER
Acaulospora splendida COL
Acaulospora tuberculata BRA/COL/PER BRA/PER/VZL
Acaulospora verna BRA
Incertae Sedis
Entrophospora infrequens BRA/COL
Diversisporaceae 5 4
Diversispora aurantia COL PER
Diversispora pustulata VZL
Diversispora spurca PER COL/PER
Diversispora trimurales COL
Otospora bareae COL
Sieverdingia tortuosa BRA ECU
Pacisporaceae 0 2
Pacispora chimonobambusae VZL
Pacispora dominikii PER
Gigasporaceae 21 7
Gigaspora albida BRA
Gigaspora candida PER
Gigaspora decipiens BRA/VZL BRA/ECU
Gigaspora gigantea BRA BRA/ECU
Gigaspora margarita BRA/COL/VZL
Gigaspora rosea BRA
Dentiscutata biornata BRA
Dentiscutata cerradensis BRA/COL
Dentiscutata erythropa COL
Dentiscutata heterogama BRA PER
Dentiscutata savannicola COL
Cetraspora armeniaca COL
Cetraspora gilmorei BRA/COL VZL
Cetraspora nodosa COL
Cetraspora pellucida BRA BRA/ECU/PER

(continued)
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Table 5.1 (continued)

AMF Coffee Cacao

Racocetra alborosea COL
Racocetra fulgida ECU
Racocetra verrucosa BRA
Scutellospora arenicola COL
Scutellospora calospora COL ECU
Scutellospora dipapillosa BRA
Scutellospora projecturata COL
Claroideoglomeraceae 3 4
Claroideoglomus claroideum COL/PER PER/VZL
Claroideoglomus drummondii COL
Claroideoglomus etunicatuma BRA/COL/PER BRA/COL/PER/ECU/VZL
Claroideoglomus luteum PER
Claroideoglomus walkeri COL
Glomeraceae 34 25
Dominikia aurea COL COL
Funneliglomus sanmartinensis PER
Funneliformis coronatum COL
Funneliformis geosporus PER ECU
Funneliformis kerguelensis COL
Funneliformis mosseae BRA/COL COL/ECU
Funneliformis verruculosus COL
Glomus ambisporum COL VZL
Glomus atrouva COL
Glomus brohultii COL/PER/VZL BRA/PER
Glomus flavisporum COL
Glomus fuegianum BRA
Glomus glomerolatum BRA BRA
Glomus hoi PER
Glomus macrocarpum BRA/COL/PER
Glomus microcarpum BRA/COL/PER COL/VZL
Glomus spinuliferum BRA/COL/PER BRA
Glomus trufemii VZL BRA
Glomus versiforme PER
Microkamienskia peruviana PER
Oehlia diaphana BRA PER/VZL
Rhizophagus aggregatus BRA/COL/PER COL/ECU
Rhizophagus clarus BRA/COL COL
Rhizophagus fasciculatus BRA/COL/PER COL/PER
Rhizophagus intraradices BRA/COL
Rhizophagus invermaium COL
Rhizophagus manihotis BRA/COL VZLA
Rhizophagus microaggregatum PER COL

(continued)
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Table 5.1 (continued)

AMF Coffee Cacao

Rhizophagus proliferum COL
Rhizophagus vesiculiferum COL
Sclerocystis clavispora BRA
Sclerocystis coremioides BRA PER
Sclerocystis liquidambaris COL
Sclerocystis rubiformis COL/PER PER
Sclerocystis sinuosaa BRA/COL/PER/VZL BRA/COL/VZL
Sclerocystis taiwanensis COL
Septoglomus constrictum PER ECU/VZL
Septoglomus deserticola BRA/COL
Septoglomus furcatum BRA
Septoglomus xanthium COL
Paraglomeraceae 4 2
Paraglomus albidum BRA
Paraglomus brasilianum COL BRA/PER
Paraglomus laccatum COL
Paraglomus occultum BRA/COL BRA/PER
Ambisporaceae 3 2
Ambispora appendicula BRA/COL/PER BRA/VZL
Ambispora fennica COL
Ambispora gerdemannii BRA PER
Ambispora leptoticha BRA
Archaeosporaceae 3 3
Archaeospora myriocarpa BRA VZL
Archaeospora schenckii COL
Archaeospora trappei BRA/COL PER
Archaeospora undulata PER
Total: 121 104 67

The country of origin of the records reported for each species is indicated (BRA Brazil; COL 
Colombia; ECU Ecuador; PER Perú; VZL Venezuela)
aSpecies with the highest frequency of appearance. Data sources: Araujo et al. (2007); Arteaga 
(2019); Blanco (2006); Bolaños et al. (2000); Carrero (2014); Cogo et al. (2017); Colozzi-Filho 
and Cardoso (2000); Corazon-Guivin et al. (2021); Cuenca and Meneses (1996); Fernandes et al. 
(2016); Kramadibrata (2009); Medina (2017); Posada et al. (2016); Prates-Junior et al. (2019); 
Rojas-Mego et al. (2014); Sandoval-Pineda et al. (2020); Santos et al. (2020); Stürmer and Siqueira 
(2006); Vallejos-Torres et al. (2022); Vallejos-Torres et al. (2019); Winagraski et al. (2019)

The dominance of the Glomeraceae followed by Acaulosporaceae in both crops 
is in accordance with that found in natural ecosystems in South America (Cofré 
et al. 2019) and other regions of the world (Stürmer et al. 2018) and also with the 
findings on a global scale in coffee agroecosystems by Hernandez-Acosta (2021). 
The high incidence of the Glomeraceae is associated with its greater capacity for 
colonization and adaptability to variable conditions (Oehl et al. 2010), also influ-
encing the fact that this family gathers the largest number of species described 
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within the phylum Glomeromycota (Stürmer et  al. 2018). Meanwhile, in the 
Acaulosporaceae, Acaulospora was the most species-rich genus (29 for coffee and 
18 for cacao), with a high relative frequency in both coffee (Bolaños et al. 2000; 
Colozzi-Filho and Cardoso 2000; Lozano-Sánchez et al. 2015; Posada et al. 2016; 
Cogo et al. 2017; Prates-Júnior et al. 2019; Urgiles-Gómez et al. 2020) and cacao 
(Cuenca and Meneses 1996; Blanco 2006; Carrero 2014; Rojas-Mego et al. 2014; 
Sandoval-Pineda et al. 2020; Santos et al. 2020). The dominance of Acaulospora 
in coffee has been related to the common presence of this genus in soils with acidic 
pH, such as the tropical soils in which this crop grows (Hernández-Acosta 
et al. 2021).

Gigasporaceae was the third most speciose family for both crops (21 for coffee 
and 7 for cacao), with fewer species reported for cacao. Likewise, at a local scale, 
Cuenca and Meneses (1996) observed a scarce presence of Gigasporaceae in 16 
cacao plantations evaluated in Venezuela, and Blanco (2006) found no species of 
this family in 20 plantations of this crop in Colombia. Gigasporaceae is usually less 
abundant in agricultural areas due to its lower tolerance to disturbance and slower 
colonization rate (Van der Heyde et al. 2017). However, some studies have found a 
high relative abundance of spores of this family in cacao plantations in Ecuador 
(Prieto-Benavides et al. 2012), as well as in coffee plantations in the Cerrado area 
of Brazil with intensive agricultural management (Fernandes et al. 2016), and it is 
suggested that biogeographic factors could be involved on the observed 
Gigasporaceae abundance.

Coffee and cacao are crops that naturally grow in understory conditions with dif-
ferences in altitude range, edaphoclimatic conditions, and forest types with which 
they are associated (Torres et al. 2008; De Beenhower et al. 2013). Although both 
crops can coexist in part of their altitudinal range, coffee occurs in the highest parts 
of the gradient associated with montane cloud forests, while cacao in the lower 
zones is associated with humid forests such as the Amazon forests from which it is 
native (Lojka et al. 2017). Despite the different ecological conditions in which these 
crops can establish, they had in common 50 AMF species, among which Acaulospora 
scrobiculata, A. mellea, A. foveata, A. tuberculata, Claroideoglomus etunicatum, 
and Sclerocystis sinuosa showed a high frequency and wide distribution, being 
found in at least three countries in both crops. These species are frequent in the 
Neotropics and are highly adaptable to different soil and climatic conditions, being 
present in a wide variety of biomes (Stürmer and Kemmelmeiner 2021). Other com-
mon species shared between both cultures were Cetraspora pellucida, A. morrow-
iae, Rhizophagus aggregatus, and R. fasciculatus. Particularly, R. aggregatus was 
reported by Hernández-Acosta et al. (2021) as the species with the highest presence 
in the coffee rhizosphere in six Latin American countries.

Some AMF species were found only in coffee (54) or cacao (17) plantations, 
showing a more restricted distribution (in only one or two countries in the region), 
which could indicate that they have specific ecological requirements and/or greater 
affinity for one of these crops. The inventory carried out shows results that could be 
useful for the selection of AMF species for the preparation of inoculants. Although 
species with a wide range of distribution and adaptability to different edaphic and 
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environmental conditions are potential candidates, their high colonization and 
establishment capacity does not necessarily imply a greater effectiveness on the 
plant. On the other hand, species with crop-specific affinity and/or adapted to par-
ticular environmental conditions can also be considered as species of choice for 
inoculant development. In either case, considering that the effectiveness of mycor-
rhizal inoculation is a complex multifactorial phenomenon, greenhouse or field tests 
are essential to assess its effectiveness in the particular crop and ecological condi-
tion in which it will be applied.

According to Sturmer and Kemmelmeiner (2021), tropical and subtropical moist 
broadleaf forests are among the biomes with the highest diversity of Glomeromycota 
in the Neotropics (186 species). The large proportion of AMF species found associ-
ated with coffee and cacao crops in this review (121 species) indicates that these 
agroforestry systems constitute an important reservoir of AMF diversity. Considering 
that the South American region is poorly explored in terms of AMF diversity, the 
presence of these reservoirs becomes even more important. In this regard, Rojas 
Mego et al. (2014) have pointed out a high proportion of morphotypes present in 
cacao plantations in the Peruvian Amazon as possible new AMF species and in 
agreement several recently described species, Acaulospora flava, Funneliglomus 
sanmartinensis, and Microkamienskia peruviana, have been reported in coffee and 
cacao agroforestry systems in this region (Arteaga 2019; Corazón-Guivin et  al. 
2021; Vallejos-Torres et al. 2022).

5.3  Effect of the Agricultural Management 
on AMF Communities

The capacity of coffee and cacao agroforestry systems to conserve the diversity of 
AMF communities and the environmental benefits offered by the forest ecosystem 
varies greatly depending on the cultivation management applied. The classification 
of agroforestry systems is based on the structural variables of the vegetation (den-
sity, richness, and composition of the shade cover) and the agricultural management 
variables used (fertilization, tillage, use of herbicides and pesticides) (Hernández- 
Martínez et al. 2009), each of these aspects having an important influence on the 
AMF communities present.

5.3.1  Shade Cover

In general, the presence of greater tree diversity in agroforestry systems can have a 
positive effect on AMF diversity and influence the composition of their communi-
ties (Bainard et al. 2011). Cuenca and Meneses (1996) found that traditional cacao 
plantations in Venezuela, with high diversity of shade trees (native and introduced 
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species) and >40  years of cultivation, maintained a diversity of species of AMF 
similar to that present in undisturbed natural ecosystems. Another study carried out 
in Venezuela by Carrero (2014) showed that cacao plantations with high shade tree 
diversity (Fig.  5.1) had significantly higher AMF species richness than the one 
found in plantations with a forest cover consisting of a single tree species (Matisia 
cordata). It has been suggested that the higher diversity of shade trees promotes a 
more diverse AMF community due to the greater availability of plant-fungus com-
binations and increased niche heterogeneity in the ecosystem (Bever et al. 2001).

In coffee plantations maintained as monocultures with full sun exposure 
(Fig. 5.2), low richness and diversity of AMF are usually found. Although it may be 
related to the limited diversity of host plants available (Trejo et al. 2011; Fernandes 
et al. 2016), it is difficult to separate this effect from the high application of agro-
chemicals that characterizes this type of management. The changes generated in the 
soil and microclimate due to the absence of forest cover and the greater incidence of 
light may also be determining factors in the composition of the AMF communities 
of these agroecosystems (Aldrich-Wolfe et al. 2020).

The identity of shade trees may also influence the arrangement of the AMF pres-
ent. Muleta et al. (2007) found higher spore density and higher frequency of the 
genus Acaulospora in the rhizosphere of legumes than under the shade of trees of 
other families. Similarly, Dobo et al. (2018) pointed out that AMF show preferences 
for specific combinations of tree groups in agroforestry systems based on “tree- 
enset- coffee.” Agroforestry has also been found to promote the distribution of AMF 
spores at different levels of the soil profile due to the access to deeper layers by the 
roots of shade trees. The mycorrhizal presence in deep soil layers has important 
implications on the dynamics of P cycling, making this nutrient more available to 
plants (Cardoso et al. 2003).

Fig. 5.1 Cacao plantation with shade tree diversity: (a) cacao and banana plants in lower strata, 
(b) canopy with diverse shade trees in different strata (Táchira state, Venezuela). Photo’s credit: 
M. Lovera
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Fig. 5.2 Coffee unshaded monoculture in deforested agricultural areas (La Guaira State, 
Venezuela). Photo credit: M. Lovera

5.3.2  Agrochemical Use

In agroforestry systems, the use of agrochemicals tends to increase progressively as 
the diversity and density of shade trees are reduced, being greater in unshaded 
monoculture growing in full sunlight. The sustained use of high doses of agrochem-
icals has a strong effect on abundance and composition of AMF communities lead-
ing to a reduction in their diversity (Ma et  al. 2020). Particularly, excessive 
phosphorous fertilization decreases root colonization and sporulation of most AMF 
(Wang et al. 2009) and may select species less effective in nutrient uptake and plant 
growth promotion (Johnson and Gibson 2021). In addition, the use of herbicides 
such as glyphosate reduces both spore germination and mycorrhizal colonization 
(Druille et al. 2013; Carvalho et al. 2014), and its residual effect hinders the recov-
ery of AMF communities (Wilkes et al. 2020). Furthermore, many of the pesticides 
and particularly the fungicides applied have an inhibitory effect on the establish-
ment of the mycorrhizal association (Jin et al. 2013; Hage-Ahmed et al. 2019).

The evaluation of AMF diversity of cacao plantations in Venezuela (Cuenca and 
Meneses 1996) showed that higher concentrations of available P in soils were cor-
related with less diverse AMF communities. Posada et al. (2016) also found this 
negative correlation in coffee plantations in Colombia in soils slightly acidic and 
relatively fertile in comparison with coffee plantations in Mexico (with poor soils 
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strongly acidic). In these last agroecosystems, an intermediate agrochemical man-
agement increased AMF richness. The positive effect of low doses of fertilization on 
physiological activity and AMF diversity present in very poor acidic tropical soils 
has also been pointed out by Sieverding (1991), indicating that extreme P limitation 
can affect negatively the functioning of the mycorrhizal association.

On the other hand, Arias et al. (2012) found that coffee plantation with different 
types of management in Mexico presented similar richness, but different composi-
tion in their AMF communities. Management systems that had in common a lack or 
low level of agrochemical applications presented AMF communities similar to 
those of the cloud forest taken as reference, despite of having very contrasting veg-
etation structure. It is suggested that the low level of available P present in these 
plantations and the reference forest could be the most important selective factor 
determining the composition of the AMF community. Similarly, Aldrich-Wolfe 
et al. (2020) found that coffee plantations organically managed with low input did 
not differ in AMF richness and diversity from conventionally managed ones but did 
show a change in AMF community composition. Gigaspora genus was associated 
with high radiation intensity and nitrate availability, Acaulospora was linked to low 
nitrate availability, while Glomus and Claroideoglomus were related with other 
environmental characteristics of conventionally managed plantations.

In other studies performed in coffee plantations in Brazil, Prates-Junior et  al. 
(2019) showed that agroecologically managed systems harbored higher AMF rich-
ness and diversity in comparison with conventionally managed plantations. It is 
argued that this effect could be associated with the lower application of agrochemi-
cals and decreased competition among AMF species due to the greater heterogene-
ity and host plant availability of the system. The evaluation by molecular methods 
of AMF species present showed that the AMF community in agroecological planta-
tions was similar to that of the forest fragment evaluated. This fact was related to the 
similarity in light availability and host plants between the two environments. 
Likewise, De Beenhower et al. (2015) in a study conducted in Ethiopia using molec-
ular methods found higher mycorrhizal diversity in coffee plantations established 
under natural forest in comparison to those with more intensive management sys-
tems, and the presence of a group of unique AMF species not shared with the rest of 
plantations was reported. These results indicate that the maintenance of a high 
diversity of indigenous shade trees with low application of agrochemicals consti-
tutes a whole desirable management that allows the conservation of a diverse AMF 
community, similar to that present in the neighboring natural forests.

5.4  Importance of AMF Diversity in the Growth 
and Productivity of Coffee and Cacao Crops

Agroecosystems that support a higher AMF species richness tended to be more 
sustainable, due to the functional complementarity between species with different 
physiological and infective abilities and their synergic effect on plants (Van der 
Heijden and Scheublin 2007). In farming environments with technical management, 
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the decrease of AMF populations and the disappearance of species are detrimental 
to the benefits they provide to the crops. In these cases, the functionality of the 
mycorrhizal association could be recovered by the use of inoculants or the applica-
tion of agronomic practices that increase AMF populations in the field.

5.4.1  Growth and Plant Nutrition

For coffee and cacao, there are numerous reports about the positive effect of AMF 
inoculation meanly in nursery stage. There are a variety of responses that seem to 
depend on the compatibility between the plant-fungus combination and soil fertility, 
being in general lower the growth response to inoculation when concentration of 
available P in soil is higher. Within the AMF that have been evaluated individually 
and have shown a positive response on the growth and/or mineral nutrition of cacao 
can be cited: Gigaspora margarita, Scutellospora calospora, Cetraspora pellucida, 
Ambispora appendicula, Funneliformis mosseae, Rhizophagus clarus, R. irregula-
ris, Septoglomus constrictum, and Acaulospora tuberculata (Cuenca et  al. 1990; 
Azizah-Chulan 1991; Oladele 2015; Droh et al. 2016; Padjun et al. 2019; Araujo 
et  al. 2020; Paguntalan et  al. 2020; Pongpisutta et  al. 2021). On the other hand, 
AMF species with favorable effects on the growth of coffee plants are Gigaspora 
margarita, Dentiscutata heterogama, Ambispora leptoticha, Funneliformis moss-
eae, Rhizophagus clarus, R. fasciculatus, R. intraradices, R. irregularis, R. maniho-
tis, Claroideoglomus etunicatum, Glomus macrocarpum, Acaulospora scrobiculata, 
A. colombiana, A. laevis, and A. mellea (Sánchez et  al. 2000; Bhattacharya and 
Bagyaraj 2002; Andrade et al. 2009; Cogo et al. 2017; Moreira et al. 2018; Cruz 
et al. 2020; Hernández-Acosta et al. 2021). It is interesting to note that in the list of 
AMF with positive effects on growth cited above, there are many AMF species 
considered as generalists which included several of the most frequently found in the 
inventory performed (A. tuberculata, A. scrobiculata, A. mellea, and C. etunicatum) 
(Table 5.1). This fact represents an advantage for their use as inoculants, given their 
adaptability to different edaphic and environmental conditions.

In these agroforestry crops, some studies show that the use of inoculants consist-
ing of a mixture of species (consortia) produces better results than inoculation with 
a single species (Hernández-Acosta et al. 2018), and in general the best results are 
achieved by indigenous consortia with high richness of species (Trejo et al. 2011; 
Droh et al. 2016; Vallejos-Torres et al. 2019). Inoculation with several AMF species 
applied in consortia can improve P uptake efficiency through the increase in density 
of external mycelium produced and the complementarity in soil exploration (Van 
der Heijden and Scheublin 2007). However, according to Hart et al. (2013), the use 
of consortia could allow the colonization and persistence in the roots of non- efficient 
AMF species, thus limiting optimal plant growth. Accordingly, a meta-analyses per-
formed by Van Geel et  al. (2016) showed that inoculation with individual AMF 
species was more effective than inoculation with consortia in controlled environ-
ments, indicating that these conditions may be beneficial to maintain a high domi-
nance of an AMF effective species previously selected.
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AMF inoculation in early stage of plant development is very important consider-
ing that substrates used in nurseries are usually sterile or have scarce number of 
AMF propagules. The use of mycorrhizal inoculants at this stage lets to obtain 
larger and/or stronger seedlings more resistant to the environmental stress of field 
transplanting. However, the functioning of the introduced inoculants in the field 
during the following stages of plant development will depend on their adaptability 
to edaphic and environmental conditions and their ability to compete with the indig-
enous AMF present in the site. Thus, it is generally considered advantageous to use 
inoculants consisting of indigenous AMF species already adapted to field condi-
tions, as compared to the use of commercial AMF inocula (Hart et al. 2017).

Several studies have followed mycorrhizal effect once seedlings are established 
in the field. Trejo et al. (2011) showed that coffee seedling inoculated with a mix of 
AMF (from plantations with intermediate technical management) presented greater 
height values and survival at transplanting than those inoculated with less diverse 
consortia (from plantations with high technical inputs). The positive effect showed 
in nursery was sustained during 250 days after sowing. Similarly, Vallejo-Torres 
et al. (2019) found that inoculation with three different indigenous consortia main-
tained a positive response on the growth of coffee clones 295 days after planting, 
with a greater effect of the consortium with the highest diversity in combination 
with a medium dose of compost.

Regarding the evaluation of long-term crop productivity, Siqueira et al. (1998) 
measured the grain yield of coffee plants inoculated with three native strains 
(Rhizophagus clarus, Gigaspora margarita, and Claroideoglomus etunicatum) for 
5 years. During the first year, a significant increase in the yield of mycorrhizal plants 
(>50%) was obtained in the presence of moderate doses of P. This result indicates 
that in highly leached acidic tropical soils where P is very limited due to its immo-
bilization in aluminum phosphates, a moderate fertilization is necessary to obtain 
the benefits of the symbiosis. In the following years, the effect of mycorrhizal inoc-
ulation was less consistent, generally reducing the observed differences. This 
decrease in the observed effect was related to colonization in the field by indigenous 
AMF of control plants (non-inoculated) and to the lower P requirement of mature 
plants. At the mature stage of crop development, protection against pathogens and 
other functions related to adaptation to environmental factors are likely to become 
more relevant than nutritional aspects.

5.4.2  Resistance to Biotic and Abiotic Stress

In addition to nutritional factors, the productivity of coffee and cacao crops can be 
greatly affected by pathogen attack. It has been found that some of the stress 
events caused by diseases associated with these pathogens can be alleviated by the 
presence of AM fungi. For example, root-knot parasitic nematodes (Meloidogyne 
exigua) decrease their pathogenic effect on coffee plants inoculated with AM 
fungi (Alban et al. 2013; Vallejos-Torres et al. 2020). According to Alban et al. 
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(2013), the increased plant growth, better phosphorous nutrition, and thickening 
of the root cuticle observed in mycorrhizal plants are factors that increase resis-
tance to nematode infection. Similarly, Vaast et al. (1998) found that Pratylenchus 
coffeae root lesions were lower in coffee plants with well-established mycorrhizal 
symbiosis and improved P status. In relation to rust (Hemileia vastatrix), a disease 
with a high negative impact on coffee production worldwide and a lower incidence 
and severity of this disease has been found in the presence of AMF (Vallejos-
Torres et  al. 2021). Mycorrhizal colonization also increases resistance to other 
pathogens such as Fusarium solani (Al-Areqi et al. 2015), Cercospora coffeicola 
(Guzmán and Rivillas- and Osorio 2007), Colletotrichum gloeosporioides 
(Colmenárez- Betancourt and Pineda 2006) and Rhizoctonia solani (Pereira 1994). 
In cacao, plants inoculated with AMF exposed to Phytophthora megakarya (black 
pod rot) improved growth and showed a significant reduction in the expression of 
this disease (Tchameni et al. 2012; Paguntalan et al. 2022), which is one of the 
main limitations for the productivity of this crop.

Regarding abiotic stress factors, drought is one of the most relevant affecting the 
survival and growth of plants in the field. AMF facilitate water uptake directly 
through the mycelial network or indirectly through increased root development and 
the improvement of soil structure (Cuenca 2015). The benefits of mycorrhizal asso-
ciation under drought stress were evidenced by Moreira et al. (2018) in an assay in 
which coffee plants inoculated with three AMF strains (R. clarus, C. etunicatum, 
and D. heterogama) increased their tolerance to moderate water deficit. Likewise, 
for cacao, the application of selected AMF strains has been proposed as a strategy 
to increase the drought resistance of this crop (Seutra-Kaba et al. 2021). Finally, the 
toxicity due to the accumulation of heavy metals (in polluted or metalliferous soil) 
is an important aspect to consider not only due to its negative effect on crop growth 
but also because of the limitations associated with its presence in the grain and the 
risk of entry into the food chain (Arévalo-Gardini et al. 2017). The use of AMF has 
been proposed as a mitigation mechanism given the ability of some AMF to immo-
bilize these metals in the intraradical hyphae or in the mycorrhizosphere, reducing 
their concentration in the plant shoot. In particular, the role of mycorrhizae in alle-
viating cadmium accumulation in cacao has been one of the most studied topics. In 
this sense, some efforts have been directed to explore the diversity of indigenous 
AMF in soils with high cadmium concentration in order to select stress-tolerant 
strains that can be used to mitigate its toxic effect and reduce the presence of this 
element in the plant shoot (Sandoval-Pineda et al. 2020; Vallejos-Torres et al. 2022).

5.5  Conclusions

Agroforestry systems maintained with low inputs under the shade of native trees 
represent an excellent strategy for the conservation of biodiversity both above- and 
belowground, constituting important reservoirs of a wide variety of AMF species 
with diverse functional traits and different potential benefits. Even though the 
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inventory of AMF species present in coffee and cacao plantations in the South 
American region is still limited, it provides useful information for understanding the 
AMF communities associated with these agroforestry systems. In particular, the 
selection of effective indigenous AMF strains or consortia for early inoculation in 
the nursery stage is a recommended practice for the management of these crops, 
being particularly important for the recovery of productivity in plantations where 
high-input management has caused a significant loss of diversity of the AMF com-
munity. Given that coffee and cacao are two crops of great socio-economic impor-
tance in South America, the use of AMF in more sustainable management practices 
is a promising path in the search to balance conservation needs with the economic 
and food requirements of the population. To achieve this goal, further in-depth 
research is needed for the effective management of this complex symbiotic 
interaction.
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6.1  Introduction

Soil contaminated by petroleum hydrocarbons is one of the most studied topics for 
the development of remediation technologies due to the extensive use of crude oil 
and the frequency of spills that cause serious damage to soils and ecosystems. 
Phytoremediation is a technique for the rehabilitation of soils impacted by hydro-
carbons that has received increasing interest as a passive, aesthetically pleasing and 
useful procedure for simultaneously attacking a wide variety of pollutants. Its appli-
cation cost is lower compared to other physical or chemical treatments, in addition 
to being an environmentally friendly technique. Depending on the geological char-
acteristics of the impacted soil, its physicochemical characteristics, and microbio-
logical activity, pollutants can undergo chemical and/or microbiological 
transformations that can influence their fate and transport in the environment. In 
tropical lowland areas, such as Venezuela, phytoremediation is advantageous due to 
the warm and almost constant temperatures throughout the year, which favor plant 
growth and the activity of soil microflora, under adequate conditions of humidity 
and nutrients.

Soil microorganisms play an important role in the bioremediation process and, 
associated with plants, contribute to the degradation of pollutants. Plants and their 
associated rhizospheric microbes interact with each other, and in most cases, plant 
often supplies the microbial population with carbon sources that stimulates the min-
eralization of organic contaminants by the indigenous microbial populations in the 
soil environment. Petroleum hydrocarbons present in the contaminated soil are 
degraded by plant-associated microbes which can involve endophytic and rhizo-
spheric bacteria. The utilization of the synergy between plants and rhizospheric 
microbes has a great potential to deal with petroleum hydrocarbons in effective soil 
remediation process.

González-Chávez et al. (2004) sustain that mycorrhizae are used in bioremedia-
tion processes, since they intervene effectively in the recovery process of oil- 
contaminated soils. El-Din Hassan et al. (2014) observed that mycorrhized willows 
had a better tolerance in oil-contaminated soil than non-mycorrhized ones, suggest-
ing that these plants, when taken to the field, could be potential phytoremediators. 
Nwoko (2014) evaluated the response of mycorrhized Phaseolus vulgaris L. in soils 
contaminated with different doses of crude oil, finding a 23% hydrocarbon removal 
rate in a soil with 2% crude oil. Rajtor et al. (2016) showed that in the rhizosphere 
of mycorrhized plants grown in soils contaminated with hydrocarbon, the number 
of microbial populations increased with the accumulation of hydrocarbon in the 
root zone. Their results suggest that the plant-mycorrhiza combination favors the 
dissipation of crude oil in the soil. Lenoir et al. (2016) observed that mycorrhizal 
plants reached a dissipation rate of 48% of hydrocarbon in contaminated soil.

Infante et al. (2012) described around 28 plant species in Venezuela associated 
with arbuscular mycorrhizae present in oil-contaminated soils. They suggest that 
the symbiosis could favor the establishment of plants in soils contaminated with 
hydrocarbons. Toro et  al. (2017) also showed favorable results of Brachiaria 
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brizantha inoculated with native mycorrhizae in soils impacted with hydrocarbons, 
which removed 80% of the total petroleum hydrocarbons (TTP) present in the soil.

Glomalin has been described as a hydrophobic glycoprotein abundantly released 
from Glomeromycota fungi hyphae in soil, is composed by a persistent carbon frac-
tion, and appears to play an essential role as binding agent of soil particles to form 
aggregates, improving soil structure. It is also known as glomalin-related soil pro-
tein (GRSP) that includes other soil proteins or components than glomalin with 
similar characteristics (Rillig 2004). It has been proposed that GRSP have a high 
binding capacity for certain toxic metals (Cu, Cd, and Pb) and mitigate damage of 
contaminated soils to plants (Vodnik et  al. 2008). Chen et  al. (2020) found that 
GRSP reduced significantly soil sorption capacities for phenanthrene. Gałązka et al. 
(2020) found that mycorrhizal fungi, through GRSP production, significantly 
increased the efficiency of the remediation process in soils contaminated with crude 
oil. Our purpose in this work is to evaluate the effect that hydrocarbon contamina-
tion has on AM propagules and the production of GRSP in the rhizosphere of A. set-
ifolia, dominant plant of a savanna impacted by an oil spill.

6.2  Materials and Methods

6.2.1  Plant Selection: Sampling

The study area is located at 8° 40´09´´N and 62 ° 59´03 W, within the Orinoco River 
Oil Belt, northeast of Venezuela. In this, the dominance of a single species of grass, 
Aristida setifolia Kunth, typical of the eastern Venezuelan savannas, was observed 
(Fig. 6.1). Eight samples of the plant and its rhizospheric soil were taken in the area 
near a hydrocarbon pit, called the contaminated zone (CZ), and three samples from 
the uncontaminated zone (NCZ) as a control. The samples were taken with a core 

Fig. 6.1 General 
appearance of Aristida 
setifolia Kunth. Source: 
Royal Botanical Garden. 
Plants from the world 
online https://powo.
science.kew.org/. 
November 2021
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8 cm in diameter and 20 cm long at a depth between 0 and 20 cm. Once in the labo-
ratory, the samples were refrigerated at 4 °C until processing.

6.2.2  Determination of Saturated, Aromatic Compounds, 
Resins, and Asphaltenes (SARA) and Total Petroleum 
Hydrocarbons (% TPH)

This analysis was performed in triplicate on a composite sample from the contami-
nated and uncontaminated zones. The determinations were based on the hydrocar-
bon detection method of 3540C (USEPA 1996), according to which the detection of 
SARA (saturated, aromatic, resins, and asphaltenes) is carried out with the use of 
IATROSKAN MK 6/6  s and thin layer chromatography coupled by means of a 
flame ionization detector (FID).

6.2.3  Isolation and Quantification of Spores 
of Glomeromycota Fungi

It was carried out with the wet sieving and decanting method, according to 
Gerdemann and Nicolson (1963) and subsequent centrifugation with 80% sucrose 
(Jenkins 1964), after which the clean spores were placed in a Petri dish with water 
for observation and quantification.

6.2.4  Quantification of Mycorrhizal Root Length (% LRM) 
in Roots of A. setifolia

The secondary roots of A. setifolia were extracted and washed with tap water. Once 
cleaned and dried, trypan blue staining was performed, according to Phillips and 
Hayman (1970). Subsequently, the mycorrhizal root length was quantified accord-
ing to Giovanetti and Mosse (1980).

6.2.5  Extraction, Staining, and Quantification 
of Glomeromycota Fungi Mycelium

The mycelium of Glomeromycota fungi in the rhizosphere of A. setifolia was 
extracted using 37% sodium hexametaphosphate as dispersant solution. Then the 
sample is vacuum filtered using a 0.2 μm nylon filter, according to Boddington et al. 
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(1999). Once having the mycelium on the filter, the hyphae were stained with trypan 
blue, as described by Phillips and Hayman (1970). The mycelium measurement was 
performed using Image Pro Plus software and a LEIKA model MC190HD camera, 
coupled to the microscope, at 40X magnification. Mycelium measurements were 
expressed as mycelium length per sample weight (m/g soil).

6.2.6  Determination of Total Glomalin-Related Soil Proteins 
(T-GRSP)

Determinations were made with the method proposed by Wright and Upadhyaya 
(1998), which consists of placing 2 g of rhizospheric soil with 8 ml of a 50 mM 
sodium citrate extracting solution in centrifuge tubes. The mixture is placed in the 
autoclave for 90 min at a temperature of 120 °C. At the end of this procedure, a 
reddish-brown solution was obtained, which was stored at 4 °C. This process was 
repeated until a clear yellow solution was obtained. At the end of the extraction 
cycle, all the extracts were joined to perform protein quantification by 
Bradford (1976).

6.2.7  Determination of Easily Extractable Glomalin-Related 
Soil Proteins (EE-GRSP)

The previous procedure proposed by Wright and Upadhyaya (1998) was carried out, 
but with a single extraction of 2 g of rhizospheric soil and 8 mL of 8 mM sodium 
citrate solution. The proteins were then quantified using the method of 
Bradford (1976).

6.2.8  Quantification of GRSP Present in Sodium Citrate 
Extracts: Bradford Method

An aliquot of the sodium citrate extracts obtained for T-GRSP and EE-GRSP deter-
minations was taken, and the Bradford (1976) methodology was applied, according 
to which the amount of proteins present in the extract is determined by reacting with 
Coomassie blue dye, using bovine serum albumin as a pattern. The results were 
expressed as mg protein/g of soil.
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6.2.9  Statistical Analysis

With the results obtained from each of the analysis, we proceeded to verify whether 
the data complied with the ANOVA assumptions. Mean comparison tests were per-
formed (p < 0.05). When the assumptions of the ANOVA were not fulfilled, the 
non-parametric statistics test, Kruskal-Wallis, was performed (p < 0.05).

6.3  Results

6.3.1  Soil Description

Soils are moderately acidic, with sandy to sandy-loam texture, low availability of N 
and P, and characteristic of Ultisols present in the Venezuelan savannas (Table 6.1).

Physicochemical comparison between contaminated and non-contaminated 
areas showed a small increase in the pH of the contaminated soil that corresponds 
well with the significant increase in electrical conductivity in CZ. Organic carbon is 
higher in CZ but does not differ statistically from NCZ, while N content is slightly 
higher in CZ.

6.3.2  Hydrocarbon Analysis Description

The percentage of total petroleum hydrocarbons (% TPH) was determined, as an 
indirect measure of the percentage of oils and fats, obtaining values of 1.8% of TPH 
in CZ and 0% of TPH in NCZ. According to the No. 5245 Official Gazette of the 
Republic of Venezuela, the percentage of fats and oils must be less than 1% in the 
surface soil. Our results show the presence of hydrocarbons above the values 
allowed by the legislation. The fractions obtained in the determination of the com-
position of the hydrocarbon according to the SARA analysis were 15.48 mg/g of 
saturates, 85.21 mg/g of resins, and 7.311 mg/g of asphaltenes (Fig. 6.2).

Table 6.1 Physicochemical characterization of rhizospheric soil samples from A. setifolia 
growing in hydrocarbon-contaminated (CZ) and non-contaminated zones (NCZ)

Sampling
zone Texture pH

EC (dS/
cm) % OM % OC % N

Available 
P
(mg/kg)

CZ Sandy 6.05± 0.60 
a

3.68 ± 0.10 
a

0.91 ± 0.76 
a

0.53 ± 0.40 
a

0.05 ± 0.04 
a

0.2 ± 0.00 
a

NCZ Sandy- 
loamy

5.95 ± 0.72 
a

1.92 ± 0.06 
b

0.54 ± 0.34 
a

0.31 ± 0.20 
a

0.03 ± 0.01 
b

0.2 ± 0.00 
a

References: t test for means comparison (p < 0.05). Different letters in the same column indicate 
statistically significant differences. Average values ± standard deviation (n = 3)
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Fig. 6.2 Fractions of saturated, aromatic, resins, and asphaltenes according to SARA analysis in 
the rhizospheric soil of A. setifolia

Table 6.2 Glomeromycota spore number, mycelium length, percentage of mycorrhized root 
length (% MRL), total (T-GRSP) and easy extractable (EE-GRSP) glomalin-related soil proteins 
in the rhizospheric soil of A. setifolia

Sampling
zone

N° Glomeromycota 
spores/100 g de soil

Hyphal 
length
(m/g de soil) % MRL

T-GRSP
(mg 
protein/g soil

EE-GRSP
(mg protein/g 
de soil)

CZ 101 ± 19.57 a 31.44 ± 0.20 
a

50.60 ± 8.53 
a

2.05 ± 1.06 a 1.67 ± 0.68 a

NCZ 168 ± 10.56 b 55.61 ± 0.03 
b

85.48 ± 5.93 
b

1.48 ± 1.22 b 1.63 ± 0.62 a

Kruskal-Wallis test (p < 0.05). Different letters in the same column indicate statistically significant 
differences. Average values ± standard deviation (n = 3)

Aromatics, the most toxic fraction of the hydrocarbons, were not detectable, 
most likely due to volatilization and natural attenuation of these compounds. If 
degradation process is occurring naturally, a favorable condition in the recovery of 
contaminated soils may be happening, since polycyclic aromatic hydrocarbons are 
highly dangerous for health due to their carcinogenic power. The resin and asphal-
tene fractions are of low biodegradability and still persist.

6.3.3  Glomeromycota Spore Number

The presence of hydrocarbon pollutants had a direct impact on the amount of 
Glomeromycota spores present in the rhizosphere of A. setifolia in CZ (Table 6.2). 
Verdín et  al. (2006) and Debiane et  al. (2009) observed the hydrocarbons had a 
direct impact on AM fungal populations, reducing the amount of spores and mycor-
rhizal colonization. However, the prevalence of plants present in areas affected by 
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the presence of oil can be mediated by the benefits of symbiotic associations. Infante 
et al. (2012) found that most of the native species that grew in soils contaminated 
with hydrocarbons were mycorrhized. The mycorrhizal association could have 
favored the presence of A. setifolia in the soils contaminated with hydrocarbon. Gao 
et al. (2014) point out that plants with symbiotic associations can tolerate certain 
concentrations of hydrocarbons, since by means of radical exudates, the biodegrad-
ability of the compound is favored. This in turn can increase bacterial populations 
with the potential to degrade them through enzymatic activities, favoring the use of 
C and phosphorus and nitrogen. The spore values obtained in NCZ were slightly 
lower than those reported by López-Gutiérrez et al. (2004) on a T. plumosus savanna 
(189.5 spores/100 g of soil) in the rainy season.

6.3.4  Mycelium Length of Glomeromycota Fungi 
in the Rhizospheric Soil of A. setifolia

In CZ the length of the mycelium is 31.44  m / g of soil, significantly less with 
respect to the value obtained for NCZ, 55.61 m/g of soil. Borie et al. (2005), Seguel 
et al. (2008), and Curaqueo et al. (2010) indicate that the density of hyphae decreases 
in the soil when disturbed by tillage or the presence of contaminants, which would 
be happening in this case, as the rhizosphere of A. setifolia is subjected to oil spill 
(Table 6.2).

6.3.5  Percentage of Mycorrhizal Root Length (% MRL) 
of A. setifolia

In CZ, mycorrhizal root colonization of A. setifolia was 50.61%, significantly lower 
than that obtained for NCZ, 85.48%. Cabello (1997) found a 30% decrease in the 
root colonization of C. dactylon due to the effect of hydrocarbon contamination. 
Franco-Ramírez et al. (2007) report that in hydrocarbon-contaminated grasslands, 
native species E. polystachya had 63–77% of mycorrhizal root colonization. This 
suggests that the infectivity of AM propagules may have been affected in the pres-
ence of hydrocarbon, although this response also depends on the type of host plant 
and the affinity for AMF. The decreases in the number of spores and amount of 
mycelium in CZ with respect to NCZ suggest that the effect of the hydrocarbon can 
affect the amount and/or viability of AMF propagules, therefore, its infective capac-
ity (Table 6.2).
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6.3.6  Quantification of T-GRSP and EE-GRSP 
in Rhizospheric Soil of A. setifolia

T-GRSP for CZ was 2.05 mg of total protein/g of soil, significantly higher than 
1.48 mg of total protein/g of soil in NCZ. Glomalin or GRSP has been observed to 
have a mitigating effect on organic pollutants on plants. Gao et al. (2017) obtained 
1.7 mg protein/g soil in a trial with aromatic hydrocarbons in cultures of M. sativa, 
similar to this work. Furthermore, Thavamani et al. (2012) found that enzyme activ-
ities were severely inhibited in soils that were contaminated with both aromatic 
hydrocarbons and heavy metals. Our results suggest that the increased production of 
T-GRSP in ZC could be a mechanism by which A. setifolia tolerates the adverse 
effects of the pollutant in the rhizosphere.

Regarding EE-GRSP, the values obtained for ZC were 1.67 mg of protein/g of 
soil similar to the values detected in ZNC 1.63 mg/g of soil. Lozano (2015) recorded 
1.5 mg of protein/g of soil in a plot affected by fire. Due to the presence of gas burn-
ers, the sampling area is exposed to high temperatures, which would directly affect 
the viability of the proteins. Temperature and water availability, among other fac-
tors, would affect mycorrhizal propagules and the amount of proteins in the soil, 
which in turn would affect the EE-GRSP content (Table 6.2).

6.4  Conclusions

Hydrocarbon pollution affected chemical parameters of soil in the contaminated 
area, a small increase in the pH of the contaminated soil that corresponds with the 
significant increase in electrical conductivity in CZ. Organic carbon is higher in CZ 
but does not differ statistically from NCZ. The greater % of total petroleum hydro-
carbons (% TPH) determined and the persistence of the hydrocarbon content above 
the permitted levels indicate that the soil is contaminated. Despite the fact that AM 
propagules were negatively affected, the higher production of T-GRSP in the rhizo-
sphere of A. setifolia would represent a defense mechanism to mitigate the contami-
nating effect of the hydrocarbon. These results may indicate that more effective 
protection to the plant occurs due to GRSP production in hydrocarbon- 
contaminated soils.

References

Boddington CL, Basset EE, Jakobsen I, Dood JC (1999) Comparison of techniques for the extrac-
tion and quantification of extra-radical mycelium of arbuscular mycorrhizal fungi in soils. Soil 
Biol Biochem 31(3):479–482

Borie F, Morales LA, Castillo RC, Rubio R, Godoy BR, Roanuet MJL (2005) Niveles de glomalina 
en dos ecosistemas al sur de Chile. Rev Cien Suelo Nutric Veg 5(1):37–45

6 Potential of Arbuscular Mycorrhizas for the Remediation of Soils Impacted…



138

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities 
of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2) 
248–254. https://doi.org/10.1016/0003- 2697(76)90527- 3 

Cabello MN (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi 
(AMF). FEMS Microbiol Ecol 22(3):233–236

Chen S, Zhou Z, Tsang, DCW, Wang J, Odinga ES, Gao Y (2020) Glomalin-related soil protein 
reduces the sorption of polycyclic aromatic hydrocarbons by soils. Chemosphere 260:1–10. 
https://doi.org/10.1016/j.chemosphere 

Curaqueo G, Acevedo E, Cornejo P, Seguel A, Rubio R, Borie F (2010) Tillage effect on soil 
organic matter, mycorrhizal hyphae and aggregate in Mediterranean agroecosystem. J Soil Sci 
Plant Nutrit 10:12–21

Debiane D, Garçon G, Verdin A, Fontaine J, Durand R, Pirouz S, Grandmougin FA, Lounès SA 
(2009) Mycorrhization alleviates benzo[a]pyrene- induced oxidative stress in an in vitro chic-
ory root model. Phytochemistry 70:1421–1427

El- Din Hassan S, Terrence HB, Franck O, PS, Davis D, Hijri M, Starnaud M (2014) Contrasting 
the community structure of arbuscular mycorrhizal fungi from hydrocarbon-contaminated and 
uncontaminated soils following willow (Salix spp. L.) planting. PLoS One 9(7):1–10

Franco Ramírez A, Ferrera Cerrato R, Varela Fregoso L, Pérez Moreno J, Alarcón A (2007) 
Arbuscular mycorrhizal fungi in chronically petroleum contaminated soils in Mexico and the 
effects of petroleum hydrocarbons on spore germination. J Basic Microbiol 47(5):378–383

Gao Y, Gou S, Wang J, Li, Wang D, Zeng D (2014) Effect different remediation treatment on crude 
oil contaminated saline soil. Chemosphere 117:486–493

Gao Y, Zong J, Que H, Zhou Z, Xiao M, Chen S (2017) Inoculation with arbuscular mycorrhi-
zal fungi increase glomalin-related soil protein content an PAH removal in soil planted with 
Medicago sativa L.  Soil Biology and Biochemistry 115:148–151. https://doi.org/10.1016/j.
chemosphere.2014.08.070 

Gałązka A, Grządziel J, Gałązka R, Gawryjołek K, Ukalska-Jaruga A, Smreczak B (2020) Fungal 
community, metabolic diversity, and glomalin-related soil proteins (GRSP) content in soil con-
taminated with crude oil after long-term natural bioremediation. Front Microbiol 11:572314

Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone species extracted from soil 
by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular 
mycorrhizal infection in roots. New Phytol 84:489–500

Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright S, Nichols K (2004) The role of glomalin, a 
protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. 
Environ Pollut 130:317–323

Infante C, Hernández-Valencia I, López L, Toro M (2012) Phytoremediation of petroleum hydro-
carbons contaminated soils in Venezuela. In: Naser ME, Ajum NA (eds) Phytotechnologies: 
remediation environmental contaminants. CRC Press Taylor & Francis Group, pp 100–112

Jenkins WR (1964) A rapid centrifugal flotation technique for separating nematodes from soil. 
Plant Dis Rep 48:692

Lenoir I, Anissa HS, Laurelle F, Dalpé Y, Fonatine J (2016) Arbuscular mycorrhizal wheat inocula-
tion alkane and polycyclic aromatic hydrocarbons biodegradation: microcosm experiment on 
aged -contaminated soil. Environ Pollut 213:546–560

López- Gutiérrez JC, Toro M, López- Hernández D (2004) Arbuscular mycorrhiza enzymatic 
activities in the rhizosphere in Trachypogon plumosus Ness. in the three acid savanna soils. 
Agric Ecosyst Environ 103:405–411

Lozano GE (2015) Sensibilidad de la Glomalina a los efectos provocados por el fuego en el suelo 
y su relación con la repelencia al agua en suelos forestales mediterráneos. Tesis Doctoral, 
Universidad Miguel Hernández, Departamento de Agroquímica y Medio Ambiente

Nwoko C (2014) Effect of arbuscular mycorrhizal (AM) fungi on the physiological performance of 
Phaseolus vulgaris grown under crude oil contaminated soil. J Geosci Environ Protect (2):9–14

J. Rosas et al.

https://doi.org/10.1016/0003-2697(76)90527-3
https://doi.org/10.1016/j.chemosphere
https://doi.org/10.1016/j.chemosphere.2014.08.070
https://doi.org/10.1016/j.chemosphere.2014.08.070


139

Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and 
vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 
55:158–161

Rajtor M, Piotrowska- Seget Z (2016) Prospects for arbuscular mycorrhizal fungi (AMF) to assist 
in phytoremediation in soil hydrocarbons contaminants. Chemosphere 152:110–116

Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 
84:355–363

Seguel A, Rubio R, Carrillo R, Espinosa A, Borie F (2008) Niveles de glomalina y su relación con 
características químicas y biológicas del suelo (andisol) en un relicto del bosque nativo del sur 
de Chile. Bosque 29(1):11–22

Toro M, Gamarra R, López L, Infante C (2017) Arbuscular mycorrhizal fungi and remediation in 
soil contaminated with hydrocarbons. In: Anjum NA (ed) Chemical control with microorgan-
ism. NOVA Publisher, New York, pp 79–97

Thavamani P, Malik S, Beer M, Megharaj M, Naidu R (2012) Microbial activity and diversity in 
long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy met-
als. J Environ Manag 99:10e17

USEPA (1996) Soxlet extraction, v I-B. Method 3540C. United State Environmental Protection 
Agency, Washington D.C

Verdín A, Sahraoui A, Lounés-Hadj SA, Fontaine J, Grandmougin FA, Durand R (2006) Effects of 
anthracene on development of an arbuscular mycorrhizal fungus and contribution of the sym-
biotic association to pollutant dissipation. Mycorrhiza 26:397–405. https://doi.org/10.1007/
s00572- 006- 0055- 8

Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of glomalin- 
related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycopro-
tein produced by hyphae of arbuscular mycorrhizal fungi. Plant Oil 198:97–107

6 Potential of Arbuscular Mycorrhizas for the Remediation of Soils Impacted…

https://doi.org/10.1007/s00572-006-0055-8
https://doi.org/10.1007/s00572-006-0055-8


141

Chapter 7
Diversity of Arbuscular Mycorrhizal Fungi 
in the Ecuadorian Amazon Region

Jessica Duchicela, A. Valdivieso, B. Prado-Vivar, V. Arévalo-Granda, 
A. Hickey-Darquea, and P. Van ‘t Hof

Contents

7.1  Introduction  142
7.2  Methods  144

7.2.1  Study Site Description  144
7.2.2  Mycorrhizal Type and Plant Status  144
7.2.3  Mycorrhizal Literature Selection Process  146

7.3  Results  146
7.4  Discussion  155
7.5  Concluding Remarks and Future Perspective  157
7.6  Appendix A  157
 References  168

J. Duchicela (*) 
Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas 
Armadas, Sangolquí, Ecuador
e-mail: jiduchicela@espe.edu.ec 

A. Valdivieso 
Universidad San Fracisco de Quito, Colegio de Ciencias Biológicas y Ambientales, COCIBA, 
Quito, Ecuador 

B. Prado-Vivar 
Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales 
COCIBA, Instituto de Microbiología, Quito, Ecuador 

V. Arévalo-Granda 
Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales 
COCIBA, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales 
COCIBA, Estación de Biodiversidad Tiputini, Quito, Ecuador 

A. Hickey-Darquea 
Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador 

P. V. 1397967985. Hof (*) 
College of Biological and Environmental Sciences, Universidad San Francisco de Quito – 
USFQ, Quito, Ecuador
e-mail: pvanthof@usfq.edu.ec

© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
M. A. Lugo, M. C. Pagano (eds.), Mycorrhizal Fungi in South America, Fungal 
Biology, https://doi.org/10.1007/978-3-031-12994-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12994-0_7&domain=pdf
mailto:jiduchicela@espe.edu.ec
mailto:pvanthof@usfq.edu.ec
https://doi.org/10.1007/978-3-031-12994-0_7


142

7.1  Introduction

As mentioned by Alexander von Humboldt, the Amazon region is a diverse network 
driven by “active and organic powers.” Given the technology available at Humboldt’s 
time, the diversity described was mostly limited to what the eye could see: mainly 
the incredible diversity of “macro-organisms” or the larger life forms such as plants 
and animals. This only partly tells the story about the biodiversity present in any 
given ecosystem on the planet. Even with all the technological advances of today, 
what lies beneath the soil surface remains in part a mystery to science. The diversity, 
abundance, and ecological importance of smaller life forms such as fungi and other 
microorganisms are a research field that has yet to be further developed, for instance, 
in the Ecuadorian Amazon region.

Soil fungi play a central role in understanding macro-biodiversity and how they 
shape ecological processes fundamental to the Amazon rainforest. To quote Paul 
Stamets in his book entitled Mycelium Running, “What goes on beneath the forest 
floor is just as interesting  - and just as important  - as what goes on above it. A 
vibrant network of nearly microscopic threads is recycling air, soil, and water in a 
continuous cycle of balance and replenishment. Survival depends not on the fittest 
but on the collective” (Stamets 2005). Revealing the role mycelial networks play 
within ecosystem functioning and how they could be linked to large-scale environ-
mental processes which are crucial for plants, animals, and us humans could sup-
port efforts to promote the conservation of the Amazon rainforest. Within the fungal 
kingdom, arbuscular mycorrhizal fungi are known to establish intimate symbiotic 
relationships with plants and would therefore be an excellent subject to enhance 
scientific knowledge about the hidden realms of the soil biome as the base of a 
healthy Amazon rainforest in Ecuador and could even contribute to finding a bal-
ance between conservation efforts and sustainable development of the entire 
Amazon Basin.

Mycorrhizal associations have been explored by different methods over time. 
Albert Bernard Frank, in 1985, for the first time proposed the concept of the mycor-
rhizal symbiosis (Antoine et al. 2021). From that point forward, palaeobotanical, 
morphological, and phylogenetic data have demonstrated that plants and mycorrhi-
zal fungi have co-evolved for more than 400 million years (Brundrett 2009). Four 
different types of mycorrhizal associations have been described: two major groups 
are formed by ectomycorrhizae (EcM, mycelia grow outside the root tissues) and 
endomycorrhizae (with the most common type as arbuscular mycorrhizae or AM), 
whereas orchid and ericoid mycorrhizae are specialized types which form unique 
mutualistic relationships with members of the Orchidaceae or Ericaceae, respec-
tively. A common method to determine the type of mycorrhizal fungal colonization 
involves chemical staining in root tissues, combined with morphological character-
ization and molecular taxonomy to identify the species level.

Arbuscular mycorrhizae are the most diverse and widespread symbionts of 
plants. These aseptate filamentous fungi comprise a monophyletic and taxonomi-
cally diverse clade within the Glomeromycota (Oehl et al. 2009; Öpik et al. 2014). 

J. Duchicela et al.



143

As obligate biotrophs, their survival depends on the successful colonization and 
establishment of the symbiosis with host plant roots by penetrating cell walls and 
forming intracellular fungal structures, called arbuscules. Here, the fungus receives 
plant-fixed carbon (C) in exchange for macro- and micronutrients, such as phospho-
rus (P) and nitrogen (N). AM fungi are known to transfer up to 90% P and 80% N 
requirements for the plant’s overall development (Smith and Read 2010). The bidi-
rectional exchange established between AMF and host plant is considered a costly 
investment; however, it is through this reciprocal exchange that both partners can 
meet important physiological needs and increase fitness and survival, particularity 
in nutrient-deficient soils. AMF symbiosis positively impacts plant productivity 
(Cofré et al. 2019; Lugo and Pagano 2019) on the one hand through plant dispersal, 
competition, and coexistence as processes at the community level and on the other 
hand by soil C sequestration and soil aggregate stabilization at the ecosystem scales 
(Duchicela et al. 2012; van der Heijden et al. 2015).

Nutrient availability acts as an important selective pressure dictating the specific 
requirements and circumstances under which plants allow the establishment of 
AMF symbiosis. In the Amazon rainforest, due to a combination of high tempera-
tures and daily precipitation, soils suffer from leaching which leads to certain nutri-
ent deficiencies. In fact, soils in the Amazon Basin frequently not possess the 
optimal nutrient balance required to support tropical agriculture. Although high 
amounts of rainfall and high temperatures create near-optimal environmental condi-
tions to allow high organic matter decomposition rates to return most of the nutri-
ents back to the soil, over time, this process leads to lixiviation. This process leaches 
nutrients to deeper parts of the soil keeping them out of reach for most plant roots 
or can inhibit the rate of bioavailability of certain nutrients (Ensley-Field 2016). 
Leaching due to high rainfall also creates more acidic soils. Along with low nutrient 
availability, this can result in forests with a low net primary productivity and lower 
species richness. However, this is not an accurate description of the Amazon rain-
forest, where high primary productivity in reality leads to high biodiversity. Despite 
the rapid nutrient cycling in the Amazon rainforest, overall P and N availability is 
relatively low, which leads to the question: how an ecosystem that features soils 
with low phosphorus concentrations can harbor the highest rates of plant diversity 
of the entire planet (Ensley-Field 2016)? Could P as a limiting resource in tropical 
forest soils provide an increased selective pressure on host plants to engage in AMF 
symbiosis? Providing an increased host plant phosphorus and nitrogen uptake, AMF 
could actively play a central role in maintaining and promoting high plant diversity 
in tropical ecosystems (Bennett et al. 2017; Sheldrake et al. 2017). It is likely that 
mineralization rates and local leaching processes within Amazonian forest commu-
nities will affect the type of mycorrhizal association.

To date, this hypothesis has yet to be explored for the Ecuadorian Amazon region. 
In this chapter, we review the state-of-art knowledge regarding mycorrhizal explo-
rations in the Ecuadorian Amazon region, and we predict the potential status of 
mycorrhiza by studying the relative abundance of mycorrhizal plants in the three 
predominant habitats at the Ecuadorian amazon region, known as Terra Firme, 
Varzea, and Igapo ecosystems.

7 Diversity of Arbuscular Mycorrhizal Fungi in the Ecuadorian Amazon Region
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7.2  Methods

7.2.1  Study Site Description

The Amazon rainforest is the largest natural region in Ecuador, spanning six prov-
inces with a total extension of 73,909 km2 (Fig. 7.1). This bioregion has elevations 
below 600 masl, and it is tropical jungle that encounters the highest average rainfall 
(3349 mm per year) in the country. From the four predominant habitats known as 
Terra Firme, Varzea, Igapo, and Campinas which have been described for the nine 
countries that comprise the Amazon Basin, only the first three are abundant in the 
Amazon region of Ecuador. Each of these habitats is differentiated by plant, animal, 
fungal, and microbial species abundance and diversity, as well as their particular 
physical and chemical conditions. Terra Firme forests are habitats that are slightly 
more elevated, with well-drained soils that contain a higher clay composition. These 
forests are characterized by vegetation commonly divided by strata as well as small 
open areas created by falling trees known as tree gaps. Tree diversity in Terra Firme 
forests is high with approximately 200 to 300 species per hectare. Varzea forests are 
periodically flooded by white water rivers that originate in the Andean highlands. 
These rivers carry eroded sediments and therefore contain high amounts of nutrients. 
When compared to Terra Firme, Varzea forests showcase a distinct soil architecture 
with higher nutrient availability, a deeper layer of organic matter and less clay 
(Ensley-Field 2016). Igapo forests are less abundant and have smaller patches, as 
these forests remain flooded for longer periods of time and have a high concentration 
of tannins dissolved in water due to vegetation decomposition, giving them the term 
blackwater ecosystems (Ensley-Field 2016). Riverine forest, riverine island scrub 
habitats, and palm marshes of Mauritia flexuosa are also present in the Ecuadorian 
Amazon, but with limited geographical extensions. Despite the before- mentioned 
differences, these three predominant habitat types of the Ecuadorian Amazon rain-
forest, share high temperature, humidity, and rainfall for most part of the year.

7.2.2  Mycorrhizal Type and Plant Status

The relative abundance of mycorrhizal plants served as an estimate for the represen-
tation of the symbiosis in the plant community (Gerz et al. 2016). Characteristics of 
interest include mycorrhizal type (e.g., AM, EcM). Plant mycorrhizal type informed 
about the role of mycorrhizal symbiosis in nutrient cycling processes (Read and 
Pérez-Moreno 2003). Moreover, plant mycorrhizal status, defined as whether or not 
a plant species has the potential to form mycorrhiza (e.g., mycorrhiza and non- 
mycorrhizal), can serve as a proxy for the extent to which plants rely on mycorrhizal 
symbiosis (Moora 2014). We analyzed the mycorrhizal status of the Ecuador 
Amazon flora checklist which we elaborated from published vegetation surveys as 
published in scientific literature. We determined the plant-mycorrhizal status using 
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Fig. 7.1 Amazon region in Ecuador. (a) Geographical map of the six Ecuadorian provinces with 
tropical rainforest cover (green areas). Striped, yellow areas indicate protected areas under the 
National Protected Areas System (SNAP; Ministerio del Ambiente del Ecuador, 2013). (b) 
Location of Yasuní National Park (area highlighted in yellow) and the surrounding Amazon prov-
inces of Sucumbios, Orellana, and Pastaza. The green to blue color gradient indicates the ecosys-
tem cover for Terra Firme, Varzea, and Igapo habitats according to the Ecosystem Classification 
System of Continental Ecuador. Source: Ministerio del Ambiente del Ecuador (2013)
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Brundrett (2009) and Wang and Qui’s (2006) checklists of the mycorrhizal status of 
land plant families. Finally, a chi-square analysis was performed to understand 
whether mycorrhiza status is directly associated to the plant origin status.

7.2.3  Mycorrhizal Literature Selection Process

We identified publications based on an initial literature search using the Institute for 
Scientific Information Web of Knowledge (now Clarivate Analytics Web of 
Science®) and the Google Scholar database, searching the following keywords 
mycorrhiz*, Amazonia*, and Ecuador*. We narrowed our initial list with selected 
publications down by filtering for inclusion criteria and scanning for root coloniza-
tion and mycorrhizal diversity in roots and soil.

7.3  Results

The total list of vascular plants incorporated in our study as presented in this chapter 
contained 162 plant species of the Ecuadorian Amazon region with information 
regarding their taxon, origin, and plant functional group. Furthermore, we assessed 
their mycorrhizal type, and status, for all listed species according to previously pub-
lished checklists on the mycorrhizal status of land plants families by Brundrett 
(2009) and Wang and Qui’s (2006) (Supplementary information Table S1). This list 
consisted of 64% native, 6% endemic, and 28% exotic species. Based on informa-
tion about their plant functional type, 28% of the plant species were attributed to 
grasses, 2% to legumes, 40% to herbaceous flowering plants or forbs, and the 
remaining 38% to woody species.

When considering plant type and status, 5% of plant species did not form any 
type of mycorrhizal associations, 2% of the plant species belonged to families that 
typically associate with ectomycorrhizal fungi (EcM), 85% of the plants belonged 
to families that typically associate with arbuscular mycorrhizal fungi (AMF), and 
8% could not be found in plant family’s records. Regarding specific types of mycor-
rhizal associations with host plant species, most of the species were characterized to 
engage in relationships with AMF across plant origin and functional group. Almost 
90% of the native and non-native plant families were categorized as mycorrhizal 
plant status (Fig. 7.2). The chi-square test was not significant, suggesting that these 
two variables are independent.

Lunt and Hedger (1996) were the first to report mycorrhizal infections observed 
after root staining methods in an original set of 23 plant species from Terra Firme 
communities in the Ecuadorian Amazon. As a result, they reported that AMF infec-
tions were the dominant mycorrhizal type within plants of these Terra Firme com-
munities. Tedersoo et al. (2010) studied the presence of ectomycorrhizal associations 
in roots of plants in a 30 ha plot in Yasuni National Park by a combination of direct 
observations of root tips and fruiting bodies and subsequent DNA sequence 
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Fig. 7.2 Occurrence of plant mycorrhizal status in native and non-native plants species from the 
Equadorian Amazon region

analysis. They reported relatively low richness of EcM fungi, contrasting the results 
of studies from temperate and tropical research sites in the Northern and Southern 
Hemisphere. The results as previously published in the two beforementioned reports 
are consistent with the results from our mycorrhizal status analysis presented here.

Moreover, Hickey (2020) observed mycorrhizal colonization of roots of seed-
lings of the genus Inga (Fabaceae) collected in Varzea and Terra Firme forest habi-
tats at the Tiputini Biodiversity Station, located at the north flank of the Tiputini 
river. This study confirmed AMF colonization in roots of members of the genus 
Inga collected from both habitats.

Regarding molecular identification of AMF, we encountered nine studies which 
were conducted in the Amazon rainforest of Ecuador within the NCBI and ENA 
database, which included information of molecular tools to taxonomic analysis of 
mycorrhizal fungi. Table  7.1 depicts the different methodological experimental 
designs, sample sizes, and study locations for all nine studies. For example, Haug 
et al. (2019) analyzed 61 plants from pristine primary and altered secondary forests. 
To extract DNA of dried mycorrhizae, they used the innuPREP Plant DNA kit and 
sequenced 18S rDNA amplicons. They used OPTSIL software to define their OTUs, 
while the taxonomic classification was done using BLAST search against the nucle-
otide sequence NCBI database. Their results showed a high richness of 
Glomeromycota in these specific tropical rainforest plots (825 sequences/25%). 
Garces et al. (2017) conducted a study focused on mycorrhizal diversity and dynam-
ics at La Joya de los Sachas in the province of Orellana, at an oil-polluted site where 
plant roots were analyzed of the following species: Monotagma sp., Polybotrya sp., 
Geonoma cf. deversa, Euterpe precatoria, Costus scaber, Costus pulverulentus, 
Costus lima, Carludovica palmata, and Polybotrya sp. DNA was extracted using 
Fast DNA SPIN Kit for Soil (MPBiomedicals) following the manufacturer’s proto-
col. The complete ITS marker region was amplified using SSUmAf-LSUmAr 
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primers for the first PCR and SSUmCd-LSUmBr primers for a subsequent nested 
PCR and sequenced using M13F-M13R primers at Macrogen Inc. All sequences 
were assembled and edited with SeqMan and grouped in OTUs with the OPTSIL 
program. Alignments were performed with MAFFT, and a maximum likelihood 
phylogenetic tree was generated using RAxML-HPC2. Taxonomic annotations 
were labeled according to Schübler and Walker (http://www.amf- phylogeny.com/). 
Furthermore, diversity was analyzed using the Shannon diversity index using the 
vegan package in R.

7.4  Discussion

The Ecuadorian Amazon is renowned for its high levels of bird, amphibian, insect, 
and floral diversity (de Oliveira Freitas et al. 2014). However, little is known about 
the microbial diversity of Amazon soils. Although plant diversity is incredibly high 
in the Ecuadorian Amazon, plant endemism is relatively low, and species tend to 
grow in ample geographical extensions. Thus far, symbiotic plant-microbe interac-
tions and general patterns of occurrence and diversity of mycorrhizal fungi in the 
Amazon rainforest in Ecuador are largely unknown.

Flora surveys and herbaria records suggest a dominance of flora associated with 
arbuscular mycorrhizal fungi. This is consistent with the observations of Tedersoo 
et al. (2010) that reported low ectomycorrhiza richness in the Yasuní region. The 
dominance of arbuscular mycorrhizal over ectomycorrhizal flora in this region 
could be explained by the habitat types which are characterized by climatic condi-
tions that favor fast leaf litter and organic matter decomposition with a rapid avail-
ability of soil nutrient which could favor arbuscular mycorrhizal associations. 
Read’s (1991) hypothesis mentions that slow decomposition rates at high latitudes 
favor mutual relationships with ectomycorrhizal fungi due to their increased capac-
ity to liberate organic nutrients (Peay 2016). Moreover, John et al. (2007) investi-
gated the influence of soil nutrients on niche structure in the Yasuni forest dynamic 
plot and reported low phosphorus, nitrogen, and pH levels, suggesting the impor-
tance of soil resource availability in the assembly of tropical tree communities. This 
also has implications on spatial heterogeneity in soil resource distributions which 
could favor specialization at different levels of essential resources available. Thus, 
soil microbial communities, in particular intimate relationships with beneficial 
mycorrhizal fungi, could be considered a key mechanism to sustain plant diversity. 
More explorations are necessary to decipher the underlying mechanisms by which 
nutrient competition favors dominance of AM associations with the Amazon flora.

The soil nutrient composition and variance influence and promote the dominance 
of certain AMF species. Previous molecular studies in tropical forests revealed that 
the order Diversisporales of the Acaulosporaceae is the most abundant group, 
instead of the order Glomerales as previously thought. Global data have confirmed 
that Acaulosporaceae prefer mostly acidic soils (Camenzind et al. 2014). Moreover, 
AM symbiosis occurs across the Ecuadorian Amazon region, from natural pristine 

7 Diversity of Arbuscular Mycorrhizal Fungi in the Ecuadorian Amazon Region
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ecosystems to anthropogenic agroecosystems. The reported AM taxa are similar to 
reports in literature from other Amazon regions. For instance, an exploration of AM 
diversity in Terra Firme biomes in the central part of the Brazilian Amazon identi-
fied 41 spore morphotypes, with species belonging to the genera Glomus and 
Acaulospora representing 44% of the total taxa (de Oliveira Freitas et al. 2014).

Plants roots in polluted environments were found to be colonized above 50%; 
nevertheless, it was the first time that AMFs were detected in roots of plants grow-
ing in contaminated soils using molecular techniques. Other studies reported more 
AMF OTUs in roots of plants growing under similar conditions, but these samples 
were sequenced using a different approach using 18S rDNA as a molecular marker 
using 454-pyrosequencing and Sanger. It is important to address that many genera 
could remain undetected when plant roots are stained for classical spore taxonomy 
using microscopy. The high abundance of spores of genus Glomus (31%) revealed 
the predominance of the Glomeraceae in oil-polluted soils, which was also verified 
by the high abundance of extraradical hyphae. These results characterized that the 
genus Acaulospora belongs to stress-tolerant AMF. And the genus Archaeospora 
with 22% of dominance was also identified in Amazon region of Brazil and 
Colombia. Because Glomeraceae, Acaulosporaceae, and Archaeosporaceae belong 
to AMF families which were previously identified in diverse plants and environ-
ments around Ecuador, the authors suggested that human, animal, and wind activi-
ties could have shaped their distribution (Garces et al. 2017).

Advances in DNA sequencing has enabled an unprecedented understanding of 
the diversity of microbial communities (Bahram et al. 2018). Microbes are present 
in all compartments of the plant such as roots, leaves, flowers, and seeds. The root 
microbiome refers to the microorganisms, their genomes, and their interactions in 
and on plant roots (Mendes et  al. 2013; Parfrey et  al. 2018). The narrow zone 
directly surrounding plant roots is defined as the rhizosphere, whereas the endo-
sphere refers to the internal plant tissues, and roots are included (Philippot et al. 
2013). Soil acts as the microbial reservoir from which plant roots recruit their 
microorganisms (Schreiter et  al. 2014). In addition to the microbial community 
recruited from the soil, the root microbiome can also harbor members that could 
have been transmitted via the plant seeds (Lemanceau et al. 2017). Soil type, plant 
species, and interactions between different microbial populations are considered to 
be the main factors that drive the assembly of the root microbiome (Lareen et al. 
2016). Rhizodeposition, in the form of secreted exudates, polysaccharide mucilage, 
enzymes, and root border cells into the rhizosphere, is an important substrate and 
triggers the reaction of both beneficial and pathogenic microorganisms (Lambers 
et al. 2009). Up to 40% of the total photosynthetic sugars are secreted into the rhi-
zosphere (Hirsch et  al. 2013), causing physical-chemical changes and enhanced 
microbial activity, referred to as the rhizosphere effect (Philippot et al. 2013).

Soil microbial communities are control centers which mediate how trees interact 
with the soil environment. Microbial networks, like the dense fungal hyphal nets 
that connect many trees, allow trees to help their nearby offspring with the best pos-
sible start in life, while competing with neighboring trees of different species 
(Aleklett and Body 2021). There is growing evidence that the microbial diversity 
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and abundance present in soils can strongly alter forest ecosystems in temperate 
regions (Wagg et  al. 2014). Nonetheless, soil microbiome information from the 
Amazon Rainforest is limited, particularly from rainforest ecosystems at the foot of 
the Ecuadorian Andes. These forests are within the top biodiversity hotspots of the 
planet, with hundreds of thousands of macro-organisms described, but currently 
lacking is important knowledge about the microbiodiversity on which the visible 
world depends.

7.5  Concluding Remarks and Future Perspective

This is a first approximation to understand the ecology of soil mycorrhizal commu-
nities in forests of the Ecuadorian Amazonia. The plant mycorrhizas status analysis 
and the reported diversity of mycorrhiza fungi suggest that arbuscular mycorrhizal 
plant families and fungi are dominant, which is consistent with the hypothesis of 
AMF being a strategy to sustain plant diversity in low P environments. Regarding 
the need of understanding the mechanism that sustains plant diversity, for future 
direction, in order to deeply address this question, we suggest expanding the explo-
ration with a combination of field and experimental observations that include trade- 
offs between morphological plant root traits, phosphatase exudation, and microbial 
dynamics in the rhizosphere.

The reported mycorrhizal diversity in literature from studies of mycorrhizal 
diversity at the Ecuadorian amazon is similar to other studies in the amazon regions; 
however it is highlighted the number of undescribed species that need more atten-
tion. Regarding the understanding of difference of mycorrhizal association in the 
three main types of biomes at the Ecuadorian Amazon, future taxonomic identifica-
tion of AMF should be based on both morphological criteria and molecular analysis. 
This will contribute to the report of the diversity of mycorrhizas; therefore, research 
should continue until databases can be completed and the underestimated AMF 
decreases in this ecosystem. The study of AMF species from natural and trans-
formed ecosystems has a representative potential in applied research on plant estab-
lishment, remediation of polluted soils, and conservation.
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8.1  Introduction

Orchids have fascinated enthusiasts and naturalists since at least the end of the eigh-
teenth century (Cullen 1992). Certainly, Darwin’s work (1862) inspired by highly 
specialized floral adaptations for attracting, deceiving, and manipulating insects to 
promote allogamy (Dressler 1981) was one of the most interesting and stimulating 
approaches for future generations of researchers. In addition, with about 30, 000 
species and a worldwide distribution, Orchidaceae is the second most diverse family 
among angiosperms (Bánki et al. 2021). Its amazing floral shapes as well as the 
intricate relationships with both pollinators and mycorrhizal fungi make this plant 
group one of the most bizarre throughout the plant kingdom.

Among mycorrhizal associations (Peterson et al. 2004; Smith and Read 2010), 
orchid mycorrhiza (OM) is a special type that only occurs within Orchidaceae. 
Since orchids form minute seeds (like dust) with a reduced endosperm (Fig. 8.1) in 
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Fig. 8.1 Seeds of Dichaea andina orchid. This genus has one of the smallest sizes of seeds among 
Orchidaceae: (a) seeds like dust on one Euro coin, (b) view through scanning electron microscope 
(SEM). (Photo credit: Y. A. Alomía)

Fig. 8.2 Cross section of 
orchid root with pelotons 
(brown hyphal coils) 
formed by fungi into the 
parenchyma cells of 
cortex; view through of 
light microscope (200X). 
Photo credit: Y. A. Alomía

natural conditions, they need a fungal partner that provides the organic source to 
support the germination and seedling establishment (Bernard 1904; Rasmussen 
1995; Brundrett 2017). This symbiosis is recognized for the formation of complex 
hyphal coils called pelotons within the root cortex tissue (Peterson et  al. 2004; 
Zettler and Corey 2018) (Fig. 8.2).

In early stages of development, the plants are entirely dependent on the supply of 
nutrients and carbon by the orchid mycorrhizal fungi (OMF). In later stages, most 
species become green plants (i.e., photosynthetic orchids), and some species can 
obtain additional carbon supplies from fungi that remain until the adult stage. This 
mode of nutrition in which the plant gains carbon simultaneously from two sources, 
its own photosynthesis and the fungal supply, is called partial mycoheterotrophy 
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(Leake 1994; Gebauer 2018) (some authors use also the term mixotrophy; see 
Selosse et al. (2016)). In a broad sense, all orchid species are mycoheterotrophic in 
some state of the life cycle. Those species without chlorophyll as adults (i.e., non-
photosynthetic orchids), which entirely rely on fungi throughout their lives for min-
eral and carbon nutrition, are called fully mycoheterotrophic orchids (Gebauer 2018).

Photosynthetic orchids are generally associated with fungi of the Rhizoctonia 
complex. This group consists of a phylogenetic heterogeneous assemblage that 
includes saprophytic, parasite, and endophyte species. Orchids also form mycor-
rhizas with fungi mainly included in the genera Ceratobasidium, Tulasnella, 
Sebacina, and Serendipita (Suárez et al. 2008; Taylor and McCormick 2008; Kottke 
and Suárez 2009; Weiß et al. 2016; Fritsche et al. 2021). On the other hand, partially 
mycoheterotrophic orchids, as well as fully mycoheterotrophic orchids, are associ-
ated with ectomycorrhizal fungi (Russula, Thelephora, Tomentella) of other nearby 
plants or with saprotrophic fungi (Resinicium, Gymnopus, and Mycena) (Martos 
et al. 2009; Zettler and Corey 2018).

Bernard (1904) reported the first record of mycorrhizal associations in orchids 
with Rhizoctonia-like fungi and proposed the first techniques for the cultivation of 
these fungi from sections of infected roots to promote seed germination. 
Morphologically, members of Rhizoctonia group share some common traits: hyphae 
without clamp connections branched at right angles, constriction of the hyphal 
branch, a septum close to the bifurcation site, and production of chains of swollen 
monilioid cells (Fig. 8.3). Detailed studies such as nuclear condition, septal ultra-
structure, enzymatic activity, and the formation of anastomosis groups (Suárez et al. 
2006, Suryantini et al. 2015, Thakur et al. 2018, Sathiyadash et al. 2020, Ghirardo 
et al. 2020, Nandeesha et al. 2021) can provide more taxonomic confidence. In addi-
tion, advances in molecular techniques have facilitated the identification of OMF 
mainly through sequencing of the internal transcribed spacer (ITS) region of ribo-
somal DNA (Kristiansen et  al. 2001; Taylor and McCormick 2008; Kottke and 
Suárez 2009; Yokoya et al. 2015; Fritsche et al. 2021).

Fig. 8.3 Typical Rhizoctonia mycelium (Ceratobasidium sp.) stained with lacto-phenol blue; (a) 
branching pattern at 90, septum and constriction close to the bifurcation, (b) monilioid cells. Photo 
credit: Y. A. Alomía

8 Orchid Mycorrhizas in South America: Tropical and Subtropical Ecosystems
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An extensive literature has been published about the structure of orchid mycor-
rhiza, mechanisms of attraction, infection, nutrient exchange, phylogeny, and isola-
tion techniques (Peterson et al. 2004; Smith and Read 2010; Dearnaley et al. 2012, 
2016; Selosse et al. 2016; Swarts and Dixon 2017; Zettler and Corey 2018). Most of 
the knowledge on this topic comes from studies conducted in temperate ecosystems 
with terrestrial orchids (Kristiansen et  al. 200; Gebauer and Meyer 2003; 
Bonnardeaux et al. 2007; Roche et al. 2010; Waterman et al. 2011; Jacquemyn et al. 
2014, 2015; Těšitelová et al. 2015). In this chapter, a synopsis of the relevant litera-
ture on the interactions between OMF and their host plants in subtropical and tropi-
cal regions from South America is presented. After that, some perspectives and 
potential collaborations will be discussed.

8.2  Studies on Orchid Mycorrhizae in South America

A great majority of studies on OM in South America are academic documents 
named as “gray” literature and deposited in the repositories of university libraries. 
Others are published in  local scientific journals written in native languages (e.g., 
Spanish, Portuguese). We have compiled the studies conducted in Brazil, Colombia, 
and Ecuador (Table 8.1), where it was possible to identify the taxon or taxa of the 
orchids studied, the methods for the identification of mycorrhizal fungi, and their 
taxonomic determination. The names of the orchid and fungal species were pre-
served as reported. The contribution of OMF of other countries in the tropical region 
of South America (Venezuela, Guyana, Surinam, French Guyana, Perú, Bolivia) has 
been limited or is not available to consult.

Pioneering studies on OM in tropical zones of South America were presented in 
the early twenty-first century by Díaz et al. (2000) in Colombia, when they were 
exploring the mycorrhizal associations in several orchid species. This study used 
morphological traits of mycelium to identify the fungal partner as Rhizoctonia for 
all species, although the main aim of the research was to identify what type of plant 
secondary metabolites was producing in the tissues where the endophytes were 
found. Around the same time, in Brazil, the first studies on orchid mycorrhizae were 
beginning in the laboratory of Professor Maria Catarina Megumi Kasuya of the 
Federal University of Viçosa. This time, it included, in addition to morphological 
characterizations, genetic information (ITS sequencing and RAPDs) (Pereira 2001). 
The interest in this subject in the country then expands, resulting in several researches 
throughout the next decade (Table 8.1). Around 2002, in Colombia, mycorrhizal 
interactions began to be explored in economically important species such as Vanilla 
planifolia (Ordóñez et al. 2012), and, under the guidance of the second author of 
this chapter from the National University of Colombia, an important field of research 
in the country was opened, resulting in multiple studies (Table  8.1). Although 
Colombia and Brazil were the pioneer countries, Ecuador has established itself as 
the leading country in research on OMF in the region. Many of the studies carried 
out in this country are rigorous investigations that have been published in scientific 
journals (unlike Brazil and Colombia, where many reports are part of gray 
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literature). Professor Juan Pablo Suárez from Universidad Técnica Particular de 
Loja (Ecuador) as the leader in this field with the academic collaboration of 
Professor Ingrid Kottke (University Tübingen, Germany) has proposed a more evo-
lutionary and ecological perspective on this type of association, including detailed 
ultrastructural analyses by transmission electron microscopy and community ecol-
ogy approaches (Kottke et al. 2008a; Kottke and Suárez 2009; Kottke et al. 2013; 
Suárez and Kottke 2016).

The initial studies identified the fungi associated with orchids from the isolation 
of the mycelium that was morphologically characterized (Díaz et al. 2000; Pereira 
2001). This approach required a great knowledge of fungi or the consultation to 
experts and did not provide very precise determinations due to the lack of reliable 
taxonomic characters to reach the species level, which would only be possible by 
obtaining the teleomorph or sexual phase of the isolated strain. In the region, unlike 
the temperate zones, obtaining teleomorphs was not a method addressed among the 
scientific community. With advances in molecular biology, the first genetic identifi-
cations were made with the random amplified polymorphic DNA (RAPD) and 
restriction fragment length polymorphism (RFLP) methods (Pereira 2001, Pereira 
et al. 2005a). Later, with the new findings on Sanger sequencing and the primers 
designed to capture the genetic information of the groups of mycorrhizal fungi fre-
quently found in orchids (Kristiansen et al. 2001, Taylor and McCormick 2008), 
many researchers bypassed the time-consuming phase of isolation of mycelium 
in  vitro to obtain the genetic information from root tissues infected with orchid 
mycorrhiza, verifying the presence of pelotons (Suárez et  al. 2006; Kottke et  al. 
2008b; Suárez et al. 2008; Kottke et al. 2010; Oliveira 2012; Valadares et al. 2012; 
Alomía et  al. 2017). The most studied genes are those of the nuclear ribosomal 
internal transcribed spacer (nrDNA ITS) gene and to a lesser extent those of the 
mitochondrial large subunit ribosomal (mtLSU) and nuclear large subunit ribo-
somal (nucLSU) regions. Sanger sequencing is the most widespread approach and 
is still used today for studies in which the strains are not required to be used in 
germination experiments or to be conserved in mycelium banks for later purposes. 
Although recent next-generation sequencing (NGS) techniques with Illumina tech-
nology offer more complex and robust information on fungi associated with orchids 
(Cevallos et al. 2016, 2018), this approach is not the most used due to the costs 
involved, which are not necessarily within the common financial source availability 
of researchers from developing countries in the region.

8.3  Research Interests

Some studies explored more than one topic in relation to the fungus-orchid associa-
tions. However, most studies (46%) have been focused on determining the diversity 
of OMF associated with few orchid species of interest. Phylogeny, morphological, 
and symbiotic seed germination studies are other of the main topics addressed 
(16%, 12%, and 11%, respectively). Ultrastructure and community ecology 

8 Orchid Mycorrhizas in South America: Tropical and Subtropical Ecosystems
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Fig. 8.4 Main studied topics in the OMF-orchid interaction from tropical and subtropical ecosys-
tems in South America

researches are hardly representative (6%), while evolutionary implications, mutual-
istic networks, and metabolic aspects are the least explored topics (1%) (Fig. 8.4). 
We did not find studies aimed at understanding physiological topics of the OMF-
orchid interaction.

These data indicate that basic questions are still being asked in the region as most 
of the studies describe the diversity of fungi associated with orchids. Few studies 
ask analytical questions that lead to a better understanding of the interactions 
between orchids and fungi. This may in part because a low resource availability 
limits the development of complex issues, such as those related to physiological or 
biochemical effects on each partner. Since the biodiversity of orchids in tropical 
South America is so extensive, the knowledge of OMF diversity is far from complete.

8.4  Challenges and Perspectives

Surprisingly, in tropical regions of South America where the Orchidaceae is espe-
cially diverse (Meisel et al. 2015; Kirby 2016), studies on orchid mycorrhiza sym-
biosis are underrepresented. However, in the last 20 years, the interest in endophytic 
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orchid fungi, both mycorrhizal and non-mycorrhizal, has increased in the region 
(Herrera et al. 2010; Hernández and Alomía 2020).

Future directions for OMF include: (i) The developing of a broader understand-
ing of OMF. Although most studies focus on fungal diversity, they do not under-
stand the evolutionary implications of the orchids and OMF  relationship. We 
encourage collaborations with the international scientific community to continue 
investigating complex questions that allow us to understand the role of mycorrhizae 
in the evolutionary success of tropical orchids. (ii) The developing of new fungal 
culture techniques to be able to use OMF in bioassays since many OMFs are diffi-
cult to grow under in vitro conditions. (iii) To publish for a wider audience. We 
found that most of the studies are in the “grey” literature. For this, it is necessary to 
generate innovative research that sparks interest in the academic community. (iv) 
The application of the information produced on OMF for orchid conservation, 
orchid propagation, and plant protection (Otero et al. 2013). Orchid conservation 
programs rarely use OMF technologies to propagate endangered orchids. Similarly, 
orchid growers do not use OMF for propagation. To develop the enormous potential 
of the region in the cultivation of orchids, we invite companies interested in the 
production of orchids such as “Ecuagenera” in Ecuador, “Lima Orquídeas” in Perú, 
and “Colombo Orquídeas,” “Orquídeas del Valle,” “Orquídeas Eva,” and “Libia 
Orquídeas” in Colombia, to be linked with the academy so that through research 
projects, added value will be generated in their business. More specifically, the use 
of mycorrhizae in the cultivation of orchids can contribute to enhancing production 
and reducing costs in sexual propagation (seeds) represented by asymbiotic media. 
Furthermore, OMF could also reduce the development time for flower production, 
generating significant financial gain for orchid sellers.
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9.1  Introduction

All orchid species depend on interactions with specific fungi for completion of their 
life cycle, particularly during early developmental stages (Rasmussen and 
Rasmussen 2009). In nature, seed germination occurs only when compatible fungi 
colonize internal seed tissues inducing the germination process and protocorm 
development (Dearnaley 2007). On the other hand, the establishment of strictly 
orchid mycorrhizae occurs a posteriori when suitable mycobionts associate with 
true roots of orchid seedlings, being often the same fungal strain involved in both 
events (Arditti et al. 1990; Favre-Godal et al. 2020). Thus, orchid mycobionts are 
expected to be important drivers for orchid species, not only for seedling establish-
ment and development but also for niche occupancy, plant nutrition and recruit-
ment, and stress mitigation among other ecological variables (McCormick and 
Jacquemyn 2014). Fungal mycobionts as drivers of orchid species distribution 
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are still a matter of discussion, with contrasting positions by different authors (Li 
et al. 2021).

Most of the taxa identified as fungal mycorrhizal or germination inducers belong 
to a polyphyletic group of Rhizoctonia-like basidiomycota fungi from the 
Ceratobasidiaceae, Sebacinaceae, Serendipitaceae, and Tulasnellaceae (Dearnaley 
et  al. 2012). However, other taxa were also identified belonging to the 
Theleophoraceae, Corticiaceae, and Polyporaceae, although to a much lesser extent 
(Jacquemyn et  al. 2017). When considering orchid habits, terrestrial species are 
commonly associated with a wider range of basidiomycota fungi than the epiphytic 
and litophytic species, where isolates of the widespread Tulasnellaceae prevail (Qin 
et al. 2020). A few ascomycota fungi were also reported as orchid mycobionts and, 
in specific cases, as mycorrhizal fungi and promoters of seed germination in ter-
restrial orchids (Hou and Guo 2009; Fracchia et al. 2014a). Most orchid mycobionts 
are free-living saprophytes, and their distribution is assumed to be independent of 
their partner plants (Jacquemyn et al. 2017).

Although new insights into the mycorrhizal symbiosis functioning have been 
published recently (Ghirardo et al. 2020; Zhang et al. 2020), there are still several 
issues at the ecosystem level that need further research to understand the symbiosis 
and advance in orchid conservation programs. The specificity and proper identity of 
mycorrhizal fungi, their role in the distribution of orchid species at different scales, 
and the temporal variability of the mutual association are still open questions 
(Li et al. 2021).

9.2  Orchids in South America

The Orchidaceae comprises about 28,000 described species, which represent circa 
8% of all vascular plants (Givnish et al. 2016). To date, over 200 new species are 
described every year, mainly in tropical regions (Chase et al. 2015). The species are 
distributed from the tropics to high latitudes with cold climates and from sea level 
to elevations greater than 4500 meters. Most of the species, around two thirds, are 
epiphytes that are restricted to tropical and subtropical habitats, nearly 5% are litho-
phytic species also restricted to the tropics, and around 25% are strictly terrestrial 
that can grow in tropical but also temperate and cold habitats (Gaskett et al. 2018).

South America concentrates approximately one third of the world’s biodiversity 
of orchids, being Colombia the country with the largest number of species in the 
world with more than 4000 species that were described (Dolce et al. 2020). Brazil 
has also a high biodiversity with approximately 205 genera and 2650 species, of 
which about 1800 are endemic (Freitas et  al. 2020). Some American genera are 
amazingly diverse, as is the case of the genus Epidendrum, with more than 1500 
known species, most of them inhabiting in the tropical rainforest of South America 
(Pinheiro and Cozzolino 2013).

As in other regions, species richness is correlated with tropical and subtropical 
ecosystems, meanwhile only 23 terrestrial species inhabit the southern Patagonia in 
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the far south of the Americas, including habitats in Cabo de Hornos islands and the 
Malvinas archipelago (Schinini et al. 2008; Herrera et al. 2019). Epiphytic species 
are restricted to latitudes below 34° S approximately, being Gomesa bifolia proba-
bly the most austral epiphytic orchid species on the planet (Cellini et al. 2009). On 
the other hand, there are entire regions where only terrestrial species grow, as in 
Patagonia and high Andean ecosystems above 4000 meters. Particularly, in Chile, 
all 72 described species belong to terrestrial habits, being almost half endemic of 
this country (Novoa et al. 2015).

The distribution of orchid species in South America is extremely variable. For 
example, Sacoila lanceolata has a wide distribution on a panamerican level; mean-
while, several epiphytic species are restricted to very small areas as inselberg spe-
cies in central Brazil (Pinheiro et  al. 2014). Another species, Gavilea insularis, 
grows only in the Alejandro Selkirk island in the Juan Fernández archipelago, with 
an estimated population of less than 300 individuals (Danton 1998). Although first 
South American orchid species were originally described more than 250 years ago 
by Linnaeus, new species are periodically described in the region (Pansarin and 
Miranda 2016; Kolanowska and Szlachetko 2020; Pérez-Escobar et al. 2021). As 
many species are endemic to very narrow areas, it is expected that new taxa are still 
waiting to be described, mainly in the tropical Andean mountains and the Amazon 
rainforest but also in the Gran Chaco, the Yungas, and remote Andean valleys.

This great diversity of orchid species is not exempt, like all living organisms, 
from the extreme anthropogenic pressure that is constantly increasing in all earth 
ecosystems. Loss of natural habitat and climate change are the main risk factors for 
South American orchids (Dolce et al. 2020). The uncontrolled expansion of farm-
land areas has drastically deteriorated natural ecosystems in the region by direct 
deforestation and subsequent area fragmentation (Siqueira-Gay et al. 2020). This is 
notable in biomes as the Atlantic Forest and Amazonian rainforest in Brazil, the 
Humid Chaco in Argentina and Paraguay, the Yungas in Argentina and Bolivia, and 
the Cloud Forest on the slopes of the Andes of Perú, Ecuador, Colombia, and 
Venezuela (Fajardo et  al. 2017; Li et  al. 2018). Several recognized hotspots of 
orchid diversity are located in these degraded biomes, so an increasing number of 
endangered or extinct species is expected in the times to come (Crain and Tremblay 
2014). Although there is no record of verified orchid species extinctions in South 
American countries, this is probably due to the lack of extensive sampling and 
updated records. The International Union for the Conservation of Nature (IUCN) 
evaluate species’ risk of extinction on the basis of rigorous criteria and the best 
available scientific information (Zizka et al. 2021).

There are still huge gaps in the basic knowledge of South American orchid spe-
cies, mainly referred to species taxonomy and phylogeny, species delimitation and 
phenotypes, distribution range, population size, pollinators, and mycorrhizal inter-
actions among others (Fracchia et al. 2016; Dolce et al. 2020). Fortunately, several 
new surveys related to conservation strategies have been published on the last years, 
which compile species richness and conservation status of specific orchid taxa in 
protected areas, as national parks and reserves (Antolin Barberena et  al. 2018; 
Martel et al. 2021; Alba-Patiño et al. 2021). On the other hand, biotechnological 
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approaches for in vitro propagation of endangered species as well as cryopreserva-
tion and germplasm conservation were also addressed worldwide, opening new pos-
sibilities for the conservation of South American orchid species (Merrit et al. 2014; 
Seaton et al. 2015; Dolce et al. 2020).

9.3  Orchid Symbiosis From a Conservationist Perspective

As mentioned above, anthropogenic pressure is taking the natural biomes of South 
America to a critical stage. In this context, due to the increasing deforestation rates 
in orchid hotspot areas (i.e., tropical mountain rainforest) but also emerging cli-
matic change effects, it is expected that a large number of orchid species will gradu-
ally be considered at extinction risk (Barman and Devadas 2013; Freitas et al. 2020). 
For this reason, the functioning of orchid mycorrhizal symbiosis acquires great 
relevance, since this association plays a pivotal role in orchids’ life cycle, such as 
seed germination, plant growth, and stress mitigation processes. When considering 
species conservation projects, both in situ and ex situ approaches, as assisted migra-
tion, symbiotic propagation, and reintroduction programs, knowledge and proper 
management of the symbiosis is essential to achieve some degree of success (Keel 
et al. 2011).

Despite the great diversity and wide distribution of orchids in South America, 
only in the last 10 years, different research groups have published consistent studies 
on the mycorrhizal symbiosis of native orchids. Prior to these works, a few citations 
refer to mycorrhizal status of some native species, as well as isolation of fungal 
strains and morphological characterizations (Godoy et  al. 1994; Pereira et  al. 
2005a, b).

Aiming at symbiotic propagation, fungal isolation strategies and culture methods 
can be determinant to recover effective mycobionts (Herrera et al. 2019). In most 
surveys in the region, strains were isolated from thin slides of surface-sterilized 
orchid roots or by picking directly the pelotons from root parenchymal cells 
(Fracchia et  al. 2014a). Other methodologies, as the seed baiting technique 
(Brundrett et al. 2003), were also explored for native orchids (Fracchia et al. 2016; 
Freitas et al. 2020). In this case, protocorms are obtained by incubating orchid seeds 
in soils inside a plastic mesh contained in diapo slides or other devices. This method 
allows us to remove the slides from soil and pick the protocorms to isolate directly 
the strains that promoted germination. An interesting adaptation of this method was 
employed in epiphytic species in an Ecuatorian reserve with the aim to detect early 
colonizing fungi (Cevallos et  al. 2018). A plastic cylinder with orchid seedlings 
inside, previously obtained in in vitro culture, was placed in selected tree branches; 
in this way, the mycorrhizal fungal community composition was assessed by 
genomic sequencing. The isolation of fungi from more precise strategies is funda-
mental, since it allows isolation of those strains that promote germination, or are 
internally associated with the orchid roots forming pelotons.
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To date, a total of 21 South American orchid species were symbiotically propa-
gated in agarized media, 14 of them being of terrestrial habit and 7 epiphytes 
(Table 9.1). Only in some of these works did they achieve symbiotic propagation 
until adult plants, or even seedlings with green leaves. Most surveys focused on 
fungal interactions related to seed germination and early protocorm development.

Table 9.1 Symbiotic propagation of South American orchid species: fungal isolates that promoted 
symbiotic germination/protocorm development

Country Orchid species Habit Fungal isolatesa 
GeneBank 
accession References

Argentina Gavilea australis Terrestrial Thanatephorus 
cucumeris
Ceratobasidiaceae
Tulasnella calospora
Ceratobasidiaceae
Ceratobasidium 
albasitensis 
Ceratobasidium sp.

KF151201 
KJ713697
KJ713701
KJ713698
KJ713699
KJ713700

Fracchia 
et al. 
(2014b)

Aa achalensis Terrestrial Gaeumannomyces 
cylindrosporus
Gaeumannomyces 
cylindrosporus
Pezizaceae
Thanatephorus 
cucumeris
Thanatephorus 
cucumeris

KF151198 
KF151199 
KF151200 
KF151201 
KF151202

Fracchia 
et al. 
(2014a)

Chloraea riojana Terrestrial Thanatephorus 
cucumeris 
Thanatephorus 
cucumeris
Rhizoctonia solani

KF151201 
KF151202 
KX267766

Fracchia 
et al. (2016)

Brazil Cyrtopodium 
paludicolum

Terrestrial Tulasnellaceae
Tulasnella

KP973894
–

Carvalho 
et al. (2017)

Cyrtopodium 
paludicolum

Terrestrial Epulorhiza sp. – Guimarães 
et al. (2013)

Cyrtopodium 
glutiniferum

Terrestrial Epulorhiza epiphytica 
(two isolates)
Epulorhiza repens
Epulorhiza sp. (two 
isolates)

–
–
–

Pereira et al. 
(2015)

Cyrtopodium 
saintlegerianum

Epiphyte Waitea circinata – Sousa et al. 
(2019)

Epidendrum 
secundum

Terrestrial Epulorhiza sp. (16 
isolates)

– Pereira et al. 
(2011)

Gomesa flexuosa Epiphyte Epulorhiza epiphytica 
(two isolates)
Ceratorhiza sp.
Epulorhiza repens

–
–
–

Pereira et al. 
(2005b)

(continued)
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Table 9.1 (continued)

Country Orchid species Habit Fungal isolatesa 
GeneBank 
accession References

Chile Chloraea 
chrysantha

Terrestrial Tulasnella sp.
Tulasnella sp.
Tulasnellaceae
Tulasnellaceae

KP278149
KP278151
KP278153
KP278156

Herrera 
et al. (2017)

Chloraea gavilu Terrestrial Tulasnella sp.
Tulasnellaceae
Tulasnella sp.
Tulasnellaceae

KP278149
KP278150
KP278151
KP278156

Herrera 
et al. (2017)

Chloraea 
bletioides

Terrestrial Tulasnellaceae
Tulasnellaceae
Tulasnellaceae

KP278153
KP278154
KP278156

Herrera 
et al. (2017)

Bipinnula 
fimbriata

Terrestrial Tulasnellaceae
Tulasnellaceae
Tulasnellaceae
Tulasnellaceae
Tulasnellaceae

KP278147
KP278148
KP278150
KP278153
KP278156

Herrera 
et al. (2017)

Chloraea crispa Terrestrial Ceratobasidium sp.
Ceratobasidium sp.
Tulasnellaceae
Tulasnellaceae

KP278168
KP278169
KP278154
KP278156

Herrera 
et al. (2017)

Chloraea 
longipetala

Terrestrial Ceratobasidium sp.
Ceratobasidium sp.
Thanetophorus sp.
Tulasnellaceae
Tulasnellaceae
Tulasnellaceae
Tulasnellaceae

KP278168 
KP278169 
KP278146 
KP278147
KP278154 
KP278155 
KP278156

Herrera 
et al. (2017)

Chloraea 
grandiflora

Terrestrial Tulasnella sp.
Tulasnellaceae
Tulasnellaceae
Tulasnellaceae
Tulasnellaceae

KP278149
KP278152
KP278154 
KP278155 
KP278156

Herrera 
et al. (2017)

Bipinnula 
fimbriata

Terrestrial Ceratobasidium sp. 
(two isolates)
Tulasnella calospora
Ceratobasidium sp.
Ceratobasidium sp.
Tulasnella calospora
Ceratobasidium sp.
Thanatephorus 
cucumeris

DQ102417c

AY373298c

DQ102413c

EF154356c

EF393622c 
EU668908c

AY387570c

Steinfort 
et al. (2010)

Chloraea gavilub Terrestrial Ceratobasidium sp. 
(two isolates)

– Pereira et al. 
(2021)

(continued)
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Table 9.1 (continued)

Country Orchid species Habit Fungal isolatesa 
GeneBank 
accession References

Colombia Vanilla rivasii Epiphyte Epulorhiza sp.
Ceratobasidium sp. 
(two isolates)
Tulasnella sp. (two 
isolates)
Epulorhiza sp. (two 
isolates)

AJ313448c

HM623619c

EF127682c

GU166424c

Alomía 
Aguirre, 
(2014)

Vanilla 
columbiana

Epiphyte Ceratobasidium sp. HM623619c Alomía 
Aguirre, 
(2014)

Comparettia 
falcata

Epiphyte Rhizoctonia solani
Ceratobasidium sp. 
(two isolates)

–
–

Karol 
Chávez 
et al. (2015)

Ecuador Epidendrum 
secundum

Terrestrial Ceratobasidium sp.
Sebacina vermifera

–
–

Durán- 
López et al. 
(2019)

Trichoceros 
antennifer

Terrestrial Rhizoctonia sp. – Ordoñez 
et al. (2016)

References:
aselected isolates that significantly promoted seed germination/protocorm development; names in 
bold were isolated from the orchid species under study;
basymbiotic seedlings inoculation
cclose relative GenBank accession numbers

Currently, only three species were symbiotically propagated in Argentina, all 
endemic and of terrestrial habit (Fracchia et al. 2014a, b, 2016). Fungal isolates of 
Tulasnella, Tanathephorus, Rhizoctonia, and Ceratobasidium genera were able to 
induce seed germination and protocorm development until seedling stage, in the 
terrestrial species Aa achalensis (Fig. 9.1), Gavilea australis, and Chloraea riojana 
(Fig. 9.2). Moreover, three melanized ascomycete fungi, isolated from Aa achalen-
sis, two isolates of Gaeumannomyces cylindrosporus, and one isolate of Pezizaceae, 
induced seed germination in the same species.

In Chile, several species, most of them of the terrestrial genus Chloraea, were 
successfully propagated in symbiotic in  vitro assays. The germination ability of 
several isolates of Tulasnella, Ceratobasidium, and Thanatephorus, isolated from 
the roots of seven orchid species, including six Chloraea species and Bipinnula 
fimbriata was evaluated by Herrera et al. (2017). Seed germination and protocorm 
development until green leaves and diverse fungal strains were observed in all spe-
cies, denoting that at least in the study species of the genus Chloraea, low specific-
ity is the norm.

On the other hand, Claro et al. (2020) found that fungi isolated from the roots of 
two rare Chilean species of the genus Bipinnula (B. appinula and B. volckmanni) 
were unable to induce seed germination, suggesting that seeds may require addi-
tional treatment for successful germination, or fungal partners isolated from adult 
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Fig. 9.1 Aa achalensis. From left to right: plant with mature inflorescence with tiny white flowers 
growing in Chaco Serrano Forest, Córdoba province, Argentina; seedlings obtained by symbiotic 
propagation in an in vitro culture assay with a Tulasnella isolate; seedlings with two leaves ready 
for transplant to solid substrates. Photo’s credit: S. Fracchia

Fig. 9.2 Chloraea riojana. From left to right: individual plant growing in the mountain slopes of 
Velasco range in La Rioja province, Argentina; symbiotic propagation in an in vitro culture assay 
with a Rhizoctonia solani strain that promoted seed germination and protocorm development, 
forming melanized coilings and pelotons inside the protocorms. Photo’s credit: S. Fracchia

plants may not be the same that support the germination of seeds. This last hypoth-
esis was raised by other authors (Li et al. 2021) and could be the case of several 
South American species. It would be an interesting challenge to detect different 
fungi that promote different stages in the development of some species of orchids.

The Brazilian epiphytic species Oncidium flexuosum was symbiotically propa-
gated by Pereira et al. (2005a). From a total of ten isolates that effectively promoted 
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seed germination and further protocorm growth until seedlings with green leaves, 
they found only one fungal strain (Ceratorhiza sp.), in a trial of 50 days of dual 
incubation. Another interesting Brazilian species, Cyrtopodium glutiniferum, with 
ornamental and medicinal value, was propagated in an in  vitro assay with an 
Epulorhiza isolate (Guimarães et al. 2013). In this work, the authors also evaluated 
different substrates for the acclimatization of orchid seedlings, propagating effi-
ciently the species with the tested mycobiont, with corncob and pine bark as sub-
strates. Recent studies on the diversity of 50 Tulasnella isolates obtained from 
pelotons of four rare and endangered orchids from a hotspot in Brazil showed an 
interesting diversity of fungal species with the detection of four new undescribed 
Tulasnella taxa (Freitas et al. 2020). This kind of survey is very interesting, since 
species of the genus Tulasnella have been reported as mycorrhizal fungi of numer-
ous endangered and rare species of neotropical orchids (Almeida et al. 2007).

In Colombia and Ecuador, countries with the highest diversity of species world-
wide, five species have been symbiotically propagated, including two species of the 
genus Vanilla (Alomía Aguirre 2014). Although most of the works on symbiotic ger-
mination and propagation are aimed at rare or endangered species, only a few explore 
species that have commercial value as medicinal, ornamental, or edible species.

Many neotropical orchids were propagated asymbiotically in agarized media, 
including mainly ornamental species that are commonly traded globally (Dolce 
et al. 2020). A recent work by Pereira et al. (2021) proposes an interesting alterna-
tive of symbiotic culture a posteriori, inoculating seedlings obtained in vitro asym-
biotic culture. They observed greater vegetative development in inoculated plants, a 
methodology that could allow greater efficiency in seedling acclimatization and 
reintroduction programs of endangered species. Failure of symbiotic germination is 
relatively common in many species of orchids. Noneffective fungal isolates, pH, 
suitable nutrient media, temperature, light photoperiod, or other factors could be 
involved in the process.

In a recent work, Herrera et al. (2020) explored endophytic bacteria associated to 
mycorrhizal roots of Chloraea and Gavilea orchid species. They found interesting 
strains with plant growth-promoting attributes such as phosphate solubilization and 
the production of indole acetic acid (IAA), suggesting that bacterial isolates could 
be managed as plant growth-promoting rhizobacteria (PGPR) for orchid species. 
An interesting line of research derived from these results could be the study of the 
interaction of mycobionts and bacteria in both processes: germination and proto-
corm development.

9.4  Conclusion

Huge challenges lie ahead for South American orchids. The indiscriminate felling 
of native forests, added to the increasing climate change effects, predicts a gloomy 
outlook for the great diversity of orchids in the subcontinent. However, current 
research on this particular symbiosis on most countries of the region, focused 
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mainly on the conservation of species by symbiotic propagation, is a first contribu-
tion to understanding this association and protecting rare and endangered species. 
There are still many aspects that need urgently to be improved to move forward 
collaboratively and more quickly. An important factor is the proper identification of 
fungi, as well as their conservation in registered germplasm banks. In many of the 
published researches, there is no record that the strains are deposited in fungal 
banks. It is known that fungal strains that promoted seed germination maintained 
this effect more than 20 years after its storage in the laboratory. New approaches for 
in situ conservation are actually considered, taking into account in addition to the 
specificity of the different species of orchids, the distribution patterns of the myco-
bionts in the ecosystem. Contrasting hypotheses still coexist about the role of myco-
bionts on the distribution of orchid species at different scales. Recent studies in 
Brazil, Ecuador, and Chile give a sample of the variability of fungi associated with 
native species, including the description of new Tulasnella species. More exhaustive 
sampling, combining with genomic analyses, will be essential to consider protected 
areas and orchid hotspots in South America.

Finally, an interesting unexplored issue in orchid culture is the incorporation of 
other plant bioinoculants, as dark septate endophytes, that is, Trichoderma isolates, 
or plant growth-promoting rhizobacteria. Synergistic effects have been observed in 
the co-inoculation of selected bacteria and other mycorrhizal fungi in several crop 
species. Improvement in plant fitness and survival rates could be achieved, increas-
ing the chances of success in reintroduction programs.
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10.1  Introduction

Modern agricultural intensification is one of the major threats to global biodiversity 
of the Anthropocene (Boivin and Crowther 2021). The associated activities with 
agriculture, such as chemical applications, tillage, monoculture practices, among 
others, are considered the most important drivers of global changes through their 
effects on the biodiversity and ecosystem functions around the world (IPCC 2019). 
In agroecosystems, some practices like no-tillage (NT) systems, characterized by a 
reduction in the intensity and/or number of tillage operations (Kabir 2005), have 
evidenced an increased crop diversity, improved soil fertility and water use, and a 
decreased soil erosion and chemical input, compared to conventional tillage (Hamel 
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1996). In addition, NT practices are more beneficial in terms of the sustainability of 
the agricultural system by improving crop yield (Zhao et al. 2017).

The Pampean phytogeographic region, comprising an area of 50 million ha at 
East-Central of Argentina (Hall et al. 1992), represents the main agricultural land of 
the country. In Argentina, NT practices have increased in the last four decades as 
one of the models of sustainable agriculture (Lal 2004; Viglizzo et al. 2011). These 
systems include row crop and reduced soil disturbance practices such as tillage 
operations or crop residue harvest that are instead implemented under conventional 
production systems (Dı́az-Zorita et al. 2002; Albertengo et al. 2013). Currently, NT 
systems occupy a large surface of the cultivated area of Argentina, reaching around 
20 million ha (Albertengo et  al. 2013) with two crop strategies usually being 
applied: monocropping and crop rotation (Derpsch et al. 2010). The main crops of 
the area are maize (Zea mays L.), soybean (Glycine max (L.) Merrill), and wheat 
(Triticum aestivum L.) that are usually grown in rotation with winter annual forage 
crops such as oat (Avena sativa L.) and triticale (Triticum aestivum L x Secale 
cereale L.) and pastures such as alfalfa (Medicago sativa L.) and fescue (Festuca 
arundinacea L.) for livestock rearing (Viglizzo et al. 2003). Although NT practices 
are less imperious for the soil ecosystem than conventional ones (Dı́az-Zorita et al. 
2002), these strategies have also been affecting the biodiversity of plants, animals, 
and microorganisms worldwide (Altieri 1999; Finckh and Wolfe 2006). Therefore, 
NT agricultural practices must be evaluated including other components, such as 
crop rotation in the context of the history of land use and the physical and chemical 
characteristics of each area or region (Derpsch et al. 2014). Among their effects on 
soil ecosystems, one of the best documented are the changes on soil biota and par-
ticularly on the communities of arbuscular mycorrhizal fungi (Oehl et  al. 2003, 
2010; Cofré et al. 2017; Marro et al. 2020).

Arbuscular mycorrhizal fungi (AMF) are one of the most important functional 
groups of soil biodiversity because they contribute greatly to crop productivity (van 
der Heijden et al. 2008). AMF can have beneficial effects on plant performance and 
soil quality, which are essential for agroecosystem functioning (Jeffries et al. 2003; 
Barrios 2007). However, the benefits of AMF abundance and diversity on crop 
yields have been overstated in the last decades (Ryan and Graham 2018). For these 
reasons, the comprehensive evaluation of soil quality in the context of agroecosys-
tems should include the study of AMF communities. In this chapter, we attempt to 
give an up-to-date overview of AMF communities in agroecosystems of Argentina. 
In the first section, we provide a characterization of AMF and their current taxo-
nomic classification considering their functioning. The following sections are 
focused on our research of the variation of AMF community under different agricul-
tural practices of agroecosystems of Argentina.
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10.2  General Characteristics of Arbuscular Mycorrhizal 
Fungi and Taxonomic Groups

Arbuscular mycorrhizal fungi establish symbiosis with more than 80% of land 
plants including the cultivated ones (Smith and Read 2008). In the soil, extra-radical 
hyphae help to acquire soil nutrients (mainly phosphorus and nitrogen), while the 
intra-radical hyphae provide these nutrients to the plant, across the arbuscular struc-
ture, in exchange for carbon in form of hexoses and lipids from the plant (Smith and 
Read 2008; Lanfranco et  al. 2018). The association with AMF promotes plant 
growth and development and also helps them to face biotic stress, such as pathogen 
or parasite attack (e.g., Azcón-Aguilar and Barea 1997; Marro et al. 2018), or abi-
otic stresses, such as drought, salinity, nutrient deficiency, or heavy metal toxicity 
(e.g., Augé 2001; Porcel et al. 2012; Malicka et al. 2021).

It is well known that the benefits of AMF vary among species and taxonomic 
groups (e.g., van der Heijden et al. 1998; Klironomos et al. 2004; Jansa et al. 2008). 
The particular benefits that each AMF species or taxonomic group provides to plants 
are linked to their fungal traits, such as the reproduction strategy (allocation of 
extra- and intra-radical biomass) and growth rate (Maherali and Klironomos 2007; 
Chagnon et al. 2013). AMF fungal traits differ among the three main taxonomic 
families of Glomeromycotina (i.e., Gigasporaceae, Glomeraceae, and 
Acaulosporaceae) (Powell et al. 2009; Koch et al. 2017). Members of Gigasporaceae 
produce extensive extra-radical mycelia and sporulate late in the growing season. 
Meanwhile, Glomeraceae colonizes mainly intra-radically and sporulates early, and 
Acaulosporaceae produces low biomass both inside and outside the roots (Hart 
et  al. 2001; Hart and Reader 2002). In the context of Grime’s framework, 
Gigasporaceae would be considered as “competitors,” Glomeraceae “ruderals,” and 
Acaulosporaceae “stress tolerant” (Chagnon et  al. 2013). Considering the func-
tional differences among AMF families and following Oehl et al.’s (2011) classifica-
tion, we hereafter will refer to four AMF taxonomic groups: Glomerales, 
Diversisporales, Gigasporales, and basal lineages (comprised by Archaesporales 
and Paraglomerales).

The AMF taxonomic groups differ in their effect on host performance under both 
regular and stressful conditions, with members of Diversisporales being the most 
beneficial to plants under regular conditions and Gigasporales to plants facing biotic 
stress (Marro et al. 2022). In the context of agriculture, AMF community changes 
due to different land uses might be relevant not only in terms of biodiversity and 
functioning changes of the soil ecosystems but also for crop productivity. However, 
the effect of agricultural practices on AMF taxonomic groups has seldom been stud-
ied (Verbruggen et al. 2010; Jansa et al. 2014). Therefore, in this chapter, we com-
pared the composition of the main AMF taxonomic groups under different land uses 
(monoculture vs. crop rotation) in five different crop fields in East-Central Argentina.
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10.3  AMF Communities Under Different 
Agricultural Practices

Since 2009, we have been studying the AMF communities of the agricultural eco-
systems of Argentina (Cofré 2014). We used the morphological traits and ontogeny 
of spores for the AMF identification; therefore, we refer to AMF species as “mor-
phospecies” (Robinson-Boyer et al. 2009). In this section, we compiled our data and 
analyzed the influence of agricultural practices on AMF morphospecies in agroeco-
systems. For these analyses, we considered the soil samples collected in five geo-
graphical locations: Manfredi, Bengolea, Monte Buey (Córdoba Province), 
Pergamino (Buenos Aires Province), and Viale (Entre Ríos Province) in East- 
Central Argentina (Fig.  10.1). Two no-till agricultural practices were compared: 
crop rotation (CR) and soybean monocropping (MC). After cropping, three to ten 
soil core samples were collected per treatment in each geographical location, and 
the spores were extracted by wet sieving and decanting (see Cofré et al. 2017 for 
more details). Species were identified using current species classifications (www.
mycobank.org). In addition, in order to evaluate the effect of soil characteristics on 
AMF composition, the main chemical soil properties were determined by standard 
methods. For each soil sample, we determined soil acidity (pH), percentage of 
organic carbon (% OC), percentage of nitrogen (% N), and available phosphorus 
(ppm of P).

The plots under both NT systems (i.e., CR and MC) were selected at four differ-
ent locations: Bengolea (33° 01’ 31” S, 63° 37’ 53” W, 231 m.a.s.l.), Monte Buey 
(32° 58’ 14” S, 62° 27’ 06” W, 930 m.a.s.l), Pergamino (33° 56’ 36” S, 60°33’ 57” 
W, 1000 m.a.s.l.), and Viale (31° 52’ 59” S, 59° 40’ 07” W, 1156 m.a.s.l.). In each 
plot, three samples (as repetitions) of the top 10 cm of soil were collected, each one 
was a composite of 20 randomly selected cores (10-cm-diameter metal corer) col-
lected within an area of 5  m2 (see Cofré et  al. 2017, 2020 for more details). 
Meanwhile, at the location of Manfredi (31.5° S, 63.5° W, 292 m.a.s.l.), the soil 
samples were taken from one long-term trial initiated in 1995, at the Instituto 
Nacional de Tecnología Agropecuaria (INTA). From the experimental trial, we also 
selected plots with both treatments (CR and MC). In each plot, we collected five soil 
samples (replicates) of the top 10 cm of soil, separated by at least 25 m from each 
other (see Marro et al. 2020 for more details).

To test for differences of AMF morphospecies between cropping systems, we 
compared the morphospecies richness, spores density, Pielou’s evenness, and 
Shannon–Weaver diversity index (Magurran and McGill 2011) obtained with the 
function diversityresult as implemented in BiodiversityR package (Kindt and Core 
2005). To determine the difference of these indices between CR and MC, we fitted 
generalized linear mixed models in the lme4 package (Bates et al. 2015), with crop-
ping system (two levels: CR and MC) as fixed factor and location as a random term. 
AMF richness was fitted with a Poisson error structure and spore’s density, Shannon 
diversity index, and evenness with a Gamma error structure.

N. Cofré et al.
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Fig. 10.1 Map showing the sites in each geographical locations included in this study:
( ) Manfredi
( ) Bengolea
( ) Monte Buey
( ) Pergamino
( ) Viale
in East-Central Argentina
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In order to describe the AMF community, we calculated the indicator values of 
each AMF morphospecies, AMF families, and AMF taxonomic groups for each 
agricultural practice using the indval function of the labdsv package (Roberts 2019). 
We considered nine AMF families (i.e., Acaulosporaceae, Ambisporaceae, 
Archaeosporaceae, Claroideoglomeraceae, Entrophosporaceae, Gigasporaceae, 
Glomeraceae, Pacisporaceae, and Paraglomeraceae) and four AMF taxonomic 
groups (i.e., Glomerales, Diversisporales, Gigasporales, and basal lineages 
[Archaeosporales and Paraglomerales]).

The effect of each agricultural practice on AMF families and taxonomic groups 
was tested with permutational multivariate analysis of variance (perMANOVA) 
using the function adonis in the vegan package (Oksanen et  al. 2020), and this 
allows to fit a linear model to partition the variation of community distance matrices 
among NT systems. Differences in the relative abundance of each AMF family and 
taxonomic group were calculated using the Bray-Curtis dissimilarity index. We 
graphically visualized the ordination of the AMF community in two dimensional 
spaces using nonmetric multidimensional scaling (NMDS) employing metaMDS 
and ordiplot functions in the vegan package. Finally, we projected the polygons of 
agricultural practices and the vectors of soil variables (soil acidity, % organic car-
bon, % nitrogen, and ppm of phosphorus) in the NMDS. The significance of each 
vector was assessed with the envfit function of the vegan package after 999 permuta-
tions. To determine whether the significant effects could be attributed to multivari-
ate dispersion rather than multivariate location (i.e., changes of abundance in AMF 
community), we calculated the beta diversity within and between groups with the 
betadisper function of vegan. Finally, to evaluate the relationship of the relative 
abundance of each AMF family and taxonomic group and soil variables, we per-
formed Pearson pair-wise correlations. All the analyses were performed with R 
(R Core Team 2021).

10.3.1  AMF Morphospecies in Both No-Till 
Agricultural Practices

A total of 59 morphospecies, comprising 18 genera and nine families, was found in 
the studied area. Only 15 morphospecies were identified at the genus level 
(Table 10.1 and Fig. 10.2). There were two AMF morphospecies indicative of CR 
system: Funneliformis mosseae and Glomus sp. 4 (indicator value  =  0.338, 
P  =  0.025; indicator value  =  0.229, P  =  0.022, respectively). Meanwhile, MC 
showed nonsignificant indicator morphospecies. The species F. mosseae and the 
genera Glomus sp. are globally widespread and considered to have ruderal strate-
gies associated, such as fast sporulating AMF successful in disturbed systems 
(Sýkorová et al. 2007; Oehl et al. 2010); thus, it draws attention that was indicative 
of CR but not for MC. In particular, F. mosseae is a generalist species widely used 
for experimental studies due to its easy culturing, but it shows a low to moderate 
effect on the promotion of plant growth, nutrient uptake, as well as protection facing 
biotic and abiotic stress comparing with other taxa (Marro et al. 2022). Probably, 
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(continued)

Table 10.1 List of the arbuscular mycorrhizal fungal morphospecies found in both no-till 
agricultural practices (crop rotation-CR-  and monocropping -MC-)  in the five geographical 
locations in East-Central Argentina

Manfredi Bengolea
Monte 
Buey Pergamino Viale

AMF morphospecies CR MC CR MC CR MC CR MC CR MC

Basal lineages
  Archaeosporales
  Ambisporaceae
  Ambispora leptoticha X X X X
  Archaeosporaceae
  Archaeospora trappei X X X X X X X X
  Paraglomerales
  Paraglomeraceae
  Paraglomus bolivianum X X
Diversisporales
  Acaulosporaceae
  Acaulospora alpina X X X X X
  A. bireticulata X X X X X X X X
  A. cavernata X
  A. delicata X
  A. excavata X X X X X
  A. kentinensis X X
  A. mellea X X X
  A. rehmii X X X X X X X
  A. scrobiculata X X X X X X X X
  A. spinosa X X X X X X
  Acaulospora sp. 1 X X
  Acaulospora sp. 2 X
  Pacisporaceae
  Pacispora sp. 1 X
Gigasporales
  Gigasporaceae
  Cetraspora pellucida X
  Dentiscutata heterogama X
  Gigaspora decipiens X X
  G. gigantea X X X X
  G. margarita X X X X X X X X X
  G. rosea X X X X X X
  Gigaspora sp.1 X
  Racocetra fulgida X X
  R. persica X
  Scutellospora biornata X X X
  S. calospora X X X X X X
  S. dipapillosa X
  S. rubra X X X
  Scutellospora sp. 1 X X
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Table 10.1 (continued)

Manfredi Bengolea
Monte 
Buey Pergamino Viale

AMF morphospecies CR MC CR MC CR MC CR MC CR MC

  Scutellospora sp. 2 X
  Scutellospora sp. 3 X
Glomerales
  Claroideoglomeraceae
  Claroideoglomus claroideum X X X X X X X X

  C. etunicatum X X X X X X X X X X
  C. lamellosum X
  C. luteum X X
  Entrophosporaceae
  Entrophospora infrequens X X X X X X
  Glomeraceae
  Funneliformis coronatus X X X
  F. geosporum X X X X X X X X X X
  F. mosseae X X X X X X X X
  Glomus brohultii X X X X X X X X X
  G. fuegianum X X X X X
  G. melanosporum X X X
  Glomus sp. 1 X X
  Glomus sp. 2 X
  Glomus sp. 3 X
  Glomus sp. 4 X X
  Glomus sp. 5 X
  Glomus sp. 6 X
  Glomus sp. 7 X
  Glomus sp. 8 X X
  Rhizoglomus 

microaggregatum
X X X X X

  R. clarum X X X X X X
  R. fasciculatum X X
  R. intraradices X X X X X X X X
  Sclerocystis sinuosa X X
  Septoglomus constrictum X X X X X X
  Sieverdingia tortuosa X
  Simiglomus hoi X
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Fig. 10.2 Some of the arbuscular mycorrhizal fungi morphospecies identified in the agroecosys-
tems of East-Central Argentina: (a) Acaulospora bireticulata, (b) A. rehmii, (c) A. scrobiculata, (d) 
Ambispora leptoticha, (e) Archaeospora trappei, (f) Claroideoglomus claroideum, (g) 
Entrophospora infrequens, (h) Dentiscutata heterogama, (i) Gigaspora margarita, (j) Scutellospora 
calospora, (k) S. rubra, (l) Funneliformis coronatus, (m) F. mosseae, (n) Rhizoglomus microag-
gregatum, (o) Sclerocystis sinuosa, (p) Septoglomus constrictum, (q) Pacispora sp., (r) Paraglomus 
bolivianum. Scale:50 μm. Photo’s credit: N. Cofré
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the change of host plant identity over time during CR is promoting F. mosseae 
sporulation, which might explain its higher occurrence in CR than in MC practice.

Richness of AMF morphospecies (CR: 7.57 ± 2.61 and MC: 6.06 ± 2.32) and 
spore’s density (CR: 82.87  ±  86.74 and MC: 31.77  ±  21.61) were significantly 
higher in CR than in MC (richness: z = 2.37, P = 0.02; density: z = 2.65, P = 0.008). 
However, evenness was significantly higher in MC than in CR (0.71 ± 0.16 and 
0.80 ± 0.11, respectively; z = 2.71, P < 0.001). Therefore, despite soils of CR harbor 
more AMF morphospecies and spores than MC soils, the community of MC was 
more evenly distributed. However, Shannon diversity index was similar between 
both agricultural practices (z = 1.53, P = 0.126). In line with our results, MC under 
no-tillage reduced the bacterial diversity (Figuerola et al. 2015) and phosphorus- 
solubilizing bacteria abundance (Agaras et al. 2014) in previous studies. In addition, 
we have previously evidenced, for soybean, that CR soil promotes higher seed qual-
ity and, to a lesser degree, higher yield than MC soil (Marro et al. 2020). Therefore, 
beyond particular AMF species, the community composition of AMF together with 
the other soil microorganisms and chemical characteristics of CR soil might be 
improving its quality and thus crop yield differentially than MC soil does.

Acaulospora bireticulata, A. scrobiculata, Archaeospora trappei, 
Claroideoglomus claroideum, C. etunicatum, Gigaspora margarita, Funneliformis 
geosporus, F. mosseae, Glomus brohultii, and Rhizoglomus intraradices occurred in 
both agricultural practices, in at least four of the five geographical locations studied 
(Table 10.1). Other morphospecies were more restricted; some of them to crop rota-
tion and some to monocropping. Twenty-one morphospecies were exclusively 
recorded in CR management (A. cavernata, A. delicata, Acaulospora sp.2, 
Claroideoglomus lamellosum, C. luteum, Cetraspora pellucida, Gigaspora decipi-
ens, Gigaspora sp.  1, Racocetra fulgida, R. persica, Scutellospora sp.  2, 
Scutellospora sp. 3, Simiglomus hoi, Glomus sp. 2, Glomus sp. 3, Glomus sp. 5, 
Glomus sp. 6, Glomus sp. 7, Sclerocystis sinuosa, Sieverdingia tortuosa, Pacispora 
sp.  1). On the other hand, Dentiscutata heterogama, Scutellospora dipapillosa, 
Scutellospora sp.1, and Paraglomus bolivianum were only registered in 
MC. Furthermore, Paraglomeraceae, with only one morphospecies (P. bolivianum), 
was exclusive to MC (Table 10.1).

Leaving the soil organic matter during agricultural management, such as in NT 
practices, not only helps prevent alteration of soil ecosystems but also improves 
carbon stocks and reduces CO2 emissions from the soil during agricultural produc-
tion (Kladivko 2001; Carrera et al. 2007; Wang et al. 2020). Here, we evidenced that 
the NT systems of East-Central Argentina harbor higher diversity of AMF com-
pared to other agroecosystems under conventional tillage (de Pontes et al. 2017). 
Moreover, the AMF diversity found in this study under NT systems is similar to that 
found in some natural ecosystems at Central Argentina (Cofré et al. 2017, Longo 
et al. 2016, Soteras et al. 2015; Grilli et al. 2012). In particular, the richer AMF com-
munity in the CR system than in MC might be caused by an alteration in soil chemi-
cal properties that facilitates the diversification of AMF assemblage (Magurno et al. 
2014). In addition, CR increases the quantity and quality of residues in soil that 
positively influence the soil biota associated with AMF and promotes soil fertility 
(Tiemann et al. 2015).

N. Cofré et al.



213

10.3.2  AMF Families and Taxonomic Groups Change 
with Agricultural Practices

The families that showed the highest number of morphospecies in East-Central 
Argentina were Glomeraceae (22), Gigasporaceae (16), and Acaulosporaceae (12), 
followed by the other families displayed in Table 10.1. Claroideoglomeraceae was 
represented by few morphospecies, but it was one of the dominant in both NT sys-
tems (Fig. 10.3a, b). Regarding the dominance of these families, for CR practice, 
Glomeraceae represented the 45% of total morphospecies number, 
Claroideoglomeraceae 30%, and Acaulosporaceae 16% (Fig.  10.3a). In MC, 
Acaulosporaceae was predominant with 35% of the total morphospecies number, 
followed by Glomeraceae (31%) and Claroideoglomeraceae (24%) (Fig. 10.3b).

In both agricultural practices the taxonomic groups followed the same pattern of 
variation, Glomerales was the dominant taxonomic group with 76% and 56% for 
CR and MC, respectively, followed by Diversisporales (16% and 34%), Gigasporales 
(6% and 7%), and Archaeosporales (2% and 3%) (Fig. 10.3c, d).

Relative abundance of AMF families (perMANOVA: pseudoF  =  4.359, 
P = 0.007) and AMF taxonomic groups (perMANOVA: pseudoF = 8.488, P = 0.003) 
was significantly influenced by agricultural practice (Fig. 10.4). Dispersion within 
and between groups was homogeneous (families: F  =  0.148, P  =  0.701; orders: 
F = 2.199, P = 0.14); thus, differences could be attributed to the agricultural practice 

Fig. 10.3 Arbuscular mycorrhizal fungal families (a and b) and orders (c and d) distribution in 
both no-till agricultural practices (crop rotation-CR- and monocropping  -MC-) of East-Central 
Argentina
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Fig. 10.4 Two-dimensional nonmetric multidimensional scaling (NMDS) plot of variation in 
arbuscular mycorrhizal fungal taxonomic groups among both no-till agricultural practices (crop 
rotation and monocropping). AMF were grouped in (a) families (stress = 0.133) and (b) orders 
(stress = 0.078). Significant (P < 0.05) soil variables are fitted as vectors (pH: soil acidity, % OC: 
percentage of organic carbon, % N: percentage of nitrogen, and P: ppm of phosphorus)

and not the multivariate dispersion. Soil variables significantly influenced the rela-
tive abundance of AMF families and taxonomic groups (Fig. 10.4). Increasing per-
centages of organic carbon and nitrogen were positively associated with CR and 
negatively with MC. The NT systems modify the soil chemical properties that shape 
AMF communities in agroecosystems, such as pH (Davison et al. 2021), nitrogen 
(Egerton-Warburton and Allen 2000), and phosphorus (Smith and Read 2008). 
AMF spore diversity being affected by nitrogen has been observed when this nutri-
ent is the most deficient instead of phosphorus (Jefwa et al. 2006). An increase of 
organic carbon in CR systems suggests a higher level of carbon sequestration due to 
a higher density of AMF hyphae in CR than in MC (Rillig et al. 2001).

Acaulosporaceae was a significant indicator family for MC (indicator 
value = 0.621, P = 0.003). The relative abundance of this family was positively cor-
related with an increasing soil acidity (t = 2.647, P = 0.009) and a decreasing per-
centage of organic carbon and nitrogen (t = −3.536, P = 0.001; t = −3.533, P = 0.001, 
respectively; Fig. 10.4a). Acaulosporaceae members tend to have very delicate and 
diffuse hyphae, which may be less “costly” in terms of carbon allocation to its host 
(Hart and Reader 2002), and generally occur in acidic soils (Veresoglou et al. 2013), 
which might explain the predominance of this family in MC soils.

Glomerales was a significant indicator order for CR and Diversisporales for MC 
(indicator value = 0.558, P = 0.002; indicator value = 0.619, P = 0.001, respec-
tively). Glomerales and Diversisporales were positively related to soil acidity 
(t = 2.958; P = 0.004; t = 2.617; P = 0.011, respectively). In addition, Diversisporales 
was negatively associated with the percentage of organic carbon (t  =  −3.527, 
P = 0.001) and nitrogen (t = −3.533; P = 0.001).
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10.4  Conclusion

The conversion of natural areas into zones with agricultural crops is one of the main 
causes of global change (IPCC 2019); thus, the implementation of agricultural prac-
tices less aggressive to nature as an alternative to the conventional ones is outstand-
ing. In this context, agroecosystems which comprise NT agricultural practices, have 
been encouraged as a sustainable agriculture (Albertengo et al. 2013; Calegari et al. 
2020; Chen et al. 2020; Cordeau 2022). However, the different NT systems vary in 
their impact on soil ecosystems as we evidenced in this chapter for the AMF com-
munities between soybean MC and soybean-maize CR systems. We observed that 
NT practices implemented in East-Central Argentina have differentially affected the 
AMF community and chemical properties of soil ecosystems. MC harbored a less 
rich AMF community with more representatives of Acaulosporaceae than CR sys-
tems, and CR were associated with an increasing % CO and % N.

The agroecosystems presented in this chapter, which do not exceed 1000 km, 
showed 17% of the Glomeromycotan taxa identified worldwide (~340). This find-
ing supports the ubiquity and low endemisms presented by this Phylum around the 
globe (Öpik et al. 2016). These morphospecies are distributed in nine of the 14 AMF 
families globally recognized (Oehl et  al. 2011), with representatives in the four 
AMF taxonomic groups. It is worth noting that agroecosystems under NT in 
Argentina hold up a highly diverse AMF community in the region studied here, 
which in addition belongs to the Caatinga Chaco diagonal, where the greatest AMF 
richness was observed (Cofré et al. 2019). Therefore, future agricultural practices in 
these soils should take particular caution with the conservation of AMF communi-
ties. The higher AMF richness of CR soils and their higher positive effect on soy-
bean productivity (Marro et al. 2020) than MC soils highlights the importance of 
carrying out less imperious agricultural practices in Argentina.
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11.1  Introduction

Soils are the most valuable ecosystem in the world (Pepper et al. 2009) because they 
provide ecosystem services needed for life on the earth (FAO and ITPS 2015). 
However, soil, water, and air pollution represent severe environmental problems 
that can affect quality and human health (FAO and UNEP 2021).

Soil contamination has frequently been used as a synonym for soil pollution. Soil 
pollution is defined as the presence of a chemical or substance (heavy metals, pesti-
cides, etc.) out of place with a higher than normal concentration with adverse effects 
on nontargeted organisms (FAO and ITPS 2015). Human activities release pollut-
ants to the environment (Swartjes 2011) affecting various species and ecosystems 
on the planet.

Heavy metals (HM) are a group of metals and metalloids with a relatively high 
atomic mass (>4.5 g/cm3) such as Pb, Cd, Cu, Hg, Sn, and Zn that cause toxicity 
problems. These elements naturally occur at low concentrations in soils, and many 
are essential for plants, animals, and humans. High HM concentrations may cause 
phytotoxicity, which accumulate in tissues and living organisms. The main anthro-
pogenic sources of HM are industrial areas, mine tailings, disposal of metal 
wastes, leaded gasoline and paints, fertilizers, pesticides, coal combustion resi-
dues, etc. (Alloway 2013). Among the HM, Zn, Ni, Co, and Cu are more toxic to 
plants; meanwhile, As, Cd, Pb, Cr, and Hg are more toxic to higher animals 
(McBride 1994).

Remediating polluted soils requires advanced technologies. Researchers and 
remediation companies are investing in technologies that enable environmentally 
and sustainable remediation (Duarte et al. 2018). A promising biological method 
proposed for cleanup of contaminated environments is phytoremediation 
(Sessitsch et al. 2013; Thijs et al. 2017). Phytoremediation uses plants and their 
associated microorganisms to remove, reduce, transform, mineralize, degrade, 
volatilize, or stabilize contaminants through their metabolic activities (Kelley 
et al. 2000; Miretzky et al. 2004; Cherian and Oliveira 2006; Cho et al. 2008). 
Depending on the type of pollutant, different strategies for phytoremediation are 
recognized: phytoextraction, phytodegradation, rhizofiltration phytostabilization, 
and phytovolatilization (Ashraf et  al. 2019). Briefly, (1) phytoextraction is the 
uptake of HM by the harvestable parts of plant, (2) phytodegradation is the decom-
position of pollutants by plants and microbes, (3) rhizofiltration is the absorption 
of metals from polluted waters, (4) phytostabilization produces a decreased 
mobility and immobilization of pollutants in soil by plant roots and microbes, and 
(5) phytovolatilization is the volatilization of pollutant into the atmosphere by 
plant roots (Chaudhry et al. 1998; Khan et al. 2000). A wide diversity of plant 
species has been identified, due to their great capacity to accumulate HM, which 
are called metal hyperaccumulating plants.

In phytoremediation, soil microorganisms must include the mycorrhizal fungi in 
soil restoration programs (Haselwandter and Bowen 1996). Arbuscular mycorrhizal 
(AM) associations enhance soil phytoremediation processes since they improve 
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plant growth-promoting, pollutant-degrading, and/or detoxification capacities 
(Chen et al. 2018; Begum et al. 2019). Arbuscular mycorrhizal fungi (AMF) are 
ubiquitous in soil being present on the roots of plants growing on HM-contaminated 
soils playing an important role in metal accumulation and tolerance (Gaur and 
Adholeya 2004; Khade and Adholeya 2009; Miransari 2011). When polluted soil is 
treated with AM-colonized plants, an important point to be considered is the selec-
tion of appropriate AMF species since they are most efficient and have the ability to 
survive under metal stress conditions being more efficient that other AMF species 
(Miransari 2011; Meier et al. 2012b).

The objective of this chapter is to show a list of metallophyte/hyperaccumu-
lator plant species registered for South America with their mycorrhizal status. 
Specifically, we focused on the relationship between AMF symbiosis with 
metallophytes in soils contaminated with Cu from Chile and soils contaminated 
with Pb from Central of Argentina.

11.2  Heavy Metal Soil Contamination, Metallophyte/
Hyperaccumulator Plants and Arbuscular 
Mycorrhizal Fungi

All soils contain HM due to the mineral composition of the lithosphere. HM can be 
derived from natural and anthropogenic sources. From natural sources, the HM con-
centration depends on the type of rock and environmental conditions. For instance, 
the olivine mineral from igneous rocks contributes with Mn, Co, Ni, Cu, and Zn to 
the soils. However, in sedimentary rocks, the minerals can release Cr, Mn, Co, Ni, 
Cu, Zn, Cd, Sn, Pb, and Hg (Nagajyoti et  al. 2010). Volcanoes, another natural 
source of metals, can emit gases and particles with Al, Zn, Mn, Pb, Ni, Cu, and Hg.

HM can also be derived from anthropogenic sources. In urban and industrial 
areas, main factors that contribute to the increases in HM content are the distur-
bances caused by rapid urbanization, the emission of gases, and deposition of par-
ticles on the soil (Lyanguzova 2017; Navarrete et al. 2017). HMs are not considered 
as a pollutant if they persist in low concentrations. The term “heavy metal pollution” 
refers to HM levels that are higher than the normal concentration (Alloway and 
Ayres 1997).

Soil contamination by HM is one of the most serious ecological problems all 
over the world. The use of plants for the decontamination of a polluted environment 
is named phytoremediation and was described in the mid-1990s (Sandermann 1994; 
Schnoor et al. 1995; Cunningham and Ow 1996). Plants used for phytoremediation 
must be capable of growing in soils with a high metal concentration. These plants 
have the ability to accumulate very high concentrations of metal or metalloid ele-
ments in their shoots or roots (Marchiol et al. 2004). They can survive, grow, and 
reproduce on natural metalliferous soils as well as on sites polluted with HM as a 
result of anthropogenic activities. Plants that grow in metalliferous soils are also 
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known as metallophytes (Baker 1987; Rascio and Navari-Izzo 2011). Metallophytes 
that can accumulate high concentrations of metals in their shoots, translocate to the 
shoot, and accumulate in organs, especially leaves, are called hyperaccumulators 
(Baker et al. 2000; McGrath and Zhao 2003). Hyperaccumulator plants can grow 
and reproduce on natural metalliferous soils such as calamine soils (enriched in Zn 
and Pb) and serpentine soils (derived from Fe- and Mg-rich ultramafic rocks, also 
enriched in Ni, Cr, and Co) (Vassilev et  al. 2004). Most hyperaccumulators are 
endemic to metalliferous soils, namely, “strict/obligate metallophytes,”; meanwhile 
“facultative metallophytes” can live also on non-metalliferous soils, but they are 
prevalent on metal-enriched habitats (Assunção et al. 2003).

Metallophyte species have evolved efficient metal-uptake mechanisms and effec-
tive metal sequestration in internal tissues (Fernández and Henríquez 1991; Ernst 
et al. 1992; Briat and Lebrun 1999). When plants accumulate metals, these metals 
can be ingested by animals, thus creating the potential for toxic effects at higher 
trophic levels. The hyperaccumulation of HM depends on the plant species, soil 
condition (pH, organic matter content, cation exchange capacity, etc.), and type of 
HM (Xian and Shokohifard 1989; Otte et al. 1993; Barman et al. 2001; Espinoza- 
Quinones et al. 2005).

The number of identified hyperaccumulator plants has increased in the last years. 
In 2015, over 450 HM-hyperaccumulating species were found in 45 angiosperm 
families (Krzciuk and Gałuszka 2014). In July 2017, the global database contains 
721 hyperaccumulator species (523 nickel, 53 copper, 42 cobalt, 1 chromium, 42 
manganese, 20 zinc, 2 rare earth elements, 41 selenium, 2 thallium, 7 cadmium, 5 
arsenic, and 8 lead) with some species showing hyperaccumulation of more than 
one element (Reeves et al. 2017, 2021).

Soil microorganisms, such as AMF, play an important role in protecting plants 
against HM. AMF are cosmopolitan, occurring even in areas with high concentra-
tions of HM (Klauberg-Filho et  al. 2005; Stürmer and Siqueira 2006). They are 
found in almost all families of herbaceous and arboreal species of interest for envi-
ronmental recovery. AMF has great potential for assisting HM hyperaccumulators 
in the remediation of contaminated soils (Miransari 2011; Meier et al. 2012b). The 
combined use of plants with AMF has advantages over the use of hyperaccumulator 
plants proposed as one of the most promising green remediation techniques (Yang 
et  al. 2016). Hyperaccumulating plants include families such as Brassicaceae, 
Plumbaginaceae, Juncaceae, Caryophyllaceae, Juncaginaceae, and Amaranthaceae 
and some members of the Fabaceae, which are usually non-AM species, although 
there are several reports of the presence of AMF associated to hyperaccumulating 
plants (Chandra et al. 2018).

The countries with the greatest numbers of published hyperaccumulator plant 
species are Cuba (Reeves et al. 1999), New Caledonia (Jaffré et al. 2013; Gei et al. 
2020), Turkey (Reeves and Adıgüzel 2008), and Brazil (Reeves et al. 2007). Latin 
America is the least studied continent, with few metallophyte (metal tolerant and/
or hyperaccumulator plants) species reported (Ginocchio and Baker 2004). 
Making focus in South America, in Table 11.1, we show a list of naturally metal-
lophyte/hyperaccumulator plants growing in metalliferous soils and their 
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Table 11.1 List of the metallophytes, hyperaccumulator, and metal indicator plant species from 
South America

Heavy metal
tolerance

Geographic 
distribution

Plant species and metal type
(Mt, H, Mi)

Mycorrhizal
Status / 
References (a)

Ni Brazil Adiantum sp. H Nd
Chromolaena sp. nov H Nd
Chromolaena nmeyeri H Nd
Porophyllum aff. 
angustissimum H

Nd

Cnidoscolus cf. bahianus H Nd
Vellozia sp. H-facultative Nd
Turnera trigona H Nd
Turnera melochioides H Nd
Turnera aff. oblongifolia H Nd
Piriqueta sidifolia H Nd
Cuphea aff.erectifolia H Nd
Mitracarpus cf. parvulus 
H-facultative

Nd

Richardia grandiflora H Nd
Lophostachys villosa 
H-facultative

Nd

Justicia lanstyakii 
H-facultative

Nd

Ruellia geminiflora H Nd
Phaphia sarcofila H-obligate Nd
Heliotropium salicoides 
H-facultative

Nd

Croton campestris H Nd
Cipura aff. xanthomelas H Nd
Camptosema aff. ellipticum 
H

Nd

Esterhazya sp. H Nd
Lippia aff. geminata H Nd
Lippia aff. lupulina H Nd
Lippia aff. gracilis H Nd
Stevia parviflora H Nd
Sida linifolia H Nd

Pb Vetiveria zizanioides Mt P (1)
Sida cordifolia Mt P (1)
Pteris vittata Mt P (1)
Pteridium aquilinum Mt P (1)
Ricinus communis Mt P (1)
Asteraceae sp. Mt P (1)

Zn, Cd Gomphrena claussenii H P (2)

(continued)
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Table 11.1 (continued)

Heavy metal
tolerance

Geographic 
distribution

Plant species and metal type
(Mt, H, Mi)

Mycorrhizal
Status / 
References (a)

As Anadenanthera peregrina 
Mt

P (3)

Brachiaria sp. Mt P (4)
Turneraceae Mt P (4)

Cu Chile Dactylium sp. Mt Nd
Nolana divaricata Mt Nd
Mulinum spinosum Mt Nd
Erigeron berterianum Mt Nd
Cenchrus echinatus Mt Nd
Mimulus luteus var. 
variegatus Mt

Nd

Oenothera picensis Mt P (5)
Imperata cylindrica Mt P (6)
Baccharis linearis Mt P(7)

As Peru Bidens cinapiifolia H Nd
Paspalum racemosum H Nd
Paspalum tuberosum H Nd

Cu Bidens cinapiifolia Mt? Nd
Se Venezuela Lecythis ollaria H Nd
Ni Waltheria americana H Nd

Oyedea sp. H Nd
Croton sp. H Nd
Lepidaploa remotiflora Mt? Nd
Borreria verticillata Mt? Nd
Wedelia calycina Mt? Nd

Zn Argentina Prosopis alba Mi Nd
Prosopis nigra Mi Nd

Cu, Zn, Ni, Sr, Li, Cd, Bi Prosopis alba Mi Nd
Cu, Zn, Ni, Sr, Li, Cd, Bi Larrea divaricata Mi Nd
Cr Ricinus communis Mt P (8)

Conium maculatum Mt P (8)
Cr, Cu, Pb, Zn Eleocharis montana 

Mi-facultative
NP (9)

Cyperus eragrostis 
Mi-facultative

NP (9)

Cr, Pb Hydrocotyle bonariensis 
Mi-facultative

P (9, 10)

As, Cd, Cr, Cu, Hg, Fe, 
Ni, Pb, Zn, Mn

Juncus pallescens Mi P (10)

Pb Bidens pilosa H P(11)
Tagetes minuta H P(12)

(continued)
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Table 11.1 (continued)

Heavy metal
tolerance

Geographic 
distribution

Plant species and metal type
(Mt, H, Mi)

Mycorrhizal
Status / 
References (a)

Sorghum halepense Mt P(13)
Jarava plumosa Mt P (14)
Solanum argentinum Mt P(14)
Zinnia peruviana Mt P(14)

Crude oil Cynodon dactylon Mt P (15)
Zn Ecuador Baccharis amdatensis Mt Nd

Rumex crispus Mt Nd
Pennisetum clandestinum Mt Nd

Pb Chenopodium ambrosioides 
Mt?

Nd

Pennisetum clandestinum 
Mt?

Nd

As Holcus lanatus Mt? Nd
Pennisetum clandestinum Mt Nd

Au, As, Sb Bolivia Baccharis incarum Mi Nd
Fabiana densa Mi Nd
Festuca orthophylla H Nd

The list is based on Ginocchio and Baker (2004), Global database (http://hyperaccumulators.smi.
uq.edu.au/collection) and local references. Plant species type (Mt: Metal tolerance, H: hyperac-
cumulator, Mi: metal indicator). Obligate metallophytes: species restricted to metalliferous soils; 
facultative metallophytes: accumulate HM on metalliferous soils but occur commonly on non- 
metalliferous soils. Heavy metal tolerance: Ni: nickel, Cd: cadmium, Zn: zinc, Pb: lead, As: arse-
nic, Se: selenium, Bi: bismuth, Sr: strontium, Cr: chromium, Cu: copper, Li: lithium, Fe: iron, Hg: 
mercury, Mn: manganese, Au: gold, Sb: antimony. Geographic distribution, arbuscular mycorrhi-
zal status (P: present, NP: not present, Nd: not determined)
aReferences: (1) Schneider et al. (2016); (2) Carvalho et al. (2019); (3) Gomes (2011); (4) Schneider 
et al. (2013); (5) Meier et al. (2011); (6) Meier et al. (2012c); (7) Menares et al. (2017); (8) Gil- 
Cardeza et al. (2014); (9) Mendoza et al. (2015); (10) Colombo et al. (2019); (11) Becerra et al. 
(2017a); (12) Becerra et al. (2017b); (13) Becerra et al. (2016); (14) Menoyo et al. (2021); (15) 
Cabello (1997)

geographical areas. This table is based on Ginocchio and Baker’s (2004) work, 
completed with the Global Hyperaccumulator Database  (http://hyperaccumula-
tors.smi.uq.edu.au/collection) with data from Brazil and local references. The 
presence and diversity of metallophytes were discriminated as Mt: tolerant to met-
alliferous soils or accumulating HM in roots, Mi: metal indicator plants present in 
the soils, and H: hyperaccumulator plants that accumulate HM in roots and shoots. 
Besides, we have included their mycorrhizal status based on local literature. As 
we can see, the information is limited and deserves wider investigation (Ginocchio 
and Baker 2004).
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11.3  Arbuscular Mycorrhizal Fungi Symbiosis 
with Metallophytes in Contaminated Soil From Chile 
and Central Argentina

In Chile, mining is the main economic activity, highlighting the production of Cu, 
being Chile the main producer worldwide (Cornejo et al. 2017b). Under this sce-
nario, it is common to find places that have been significantly affected by the depo-
sition and accumulation of mining wastes, especially in the north and center Chile, 
being recognized several hundred sites as mining tailings that have not received an 
adequate closure (MMA 2011), with a high probability of producing serious con-
tamination issues in the near future. The strong mining activity associated with the 
extraction of Cu has produced large amounts of toxic wastes with high concentra-
tions of this element (Cornejo et  al. 2008; Ávila et  al. 2010; Castañón-Silva 
et al. 2013).

In Central Argentina, lead (Pb)-polluted soil was recorded in the proximity of a 
former battery recycling factory, which operated for two decades (1984–2005) and 
finally closed due to a lack of emission control and inadequate waste disposal that 
caused a severe accumulation of Pb over an extensive zone (Salazar and Pignata 
2014). Pb is one of the most widespread metal contaminants in soil, and Pb decon-
tamination is crucial for the maintenance of environmental health and ecological 
restoration (Moosavi and Seghatoleslami 2013).

Heavy metal contamination changes the abundance and diversity of the AMF 
population in the soil (Del Val et al. 1999). Nonetheless, studies on the occurrence 
and diversity of AMF in South America soils contaminated with HMs are scarce. In 
this section of the chapter, we focus on the relationship between AMF symbiosis in 
Chile contaminated with Cu and Central of Argentina contaminated with Pb.

11.3.1  Chile

In Chile, the Puchuncaví Valley (Valparaíso Region - Central Chile, Fig. 11.1a) is 
highlighted as one of the main studied areas where the impact of mining activities 
is strong. In this area coexist various thermoelectric installations, oil refineries, and 
the Ventanas Cu smelter. For more than five decades, the multiple industrial activi-
ties have generated an enormous impact on soils, represented by the loss of high 
amounts of organic matter and the presence of an extreme erosion (Cornejo et al. 
2008). Additionally, the Puchuncaví Valley shows a very scarce plant cover cur-
rently represented by a few (pseudo) metallophyte species capable of tolerating and 
growing under high levels of metals present (Fig. 11.1b-d) and the acidity produced 
by the acid rain (González et al. 2008). In spite of the above, the impacts on micro-
bial communities and their functioning under these conditions have been poorly 
studied (Aponte et al. 2020), which is even more evident in other areas of the coun-
try with the presence of metal-contaminated sites, such as Northern Chile.
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Fig. 11.1 Some representative images regarding the study of AMF in metal contaminated soils in 
Chile. (a) General view of the Puchuncaví Valley (central Chile) where it is easily distinguishable 
by the strong effect on the plant cover and erosion by the deposition of mining wastes. In this area, 
only few plant species are present. Among them, (b) Imperata cylindrica, (c) Oenothera picensis, 
and (d) Baccharis linearis have demonstrated a high mycorrhizal dependence and the capability to 
be used in phytoremediation programs. (e) View of resistance spores of the AM fungus 
Claroideoglomus claroideum showing accumulation of Cu salts. (f) Arbuscular mycorrhizal colo-
nization in Oenothera piscensis roots at different Cu levels in interaction with (+SB) and without 
(-SB) sugar beet (SB) wastes as amendments. Photo credit: P. Cornejo

Although Cu is an essential micronutrient for the plant and soil microorganisms’ 
growth, its presence in excessive concentrations can be highly toxic (Cuillel 2009; 
Vidal et al. 2020, 2021). Numerous studies have shown the mechanisms of AMF to 
cope with the toxicity produced by Cu in plants. The compartmentalization of 
excessive amounts of Cu in the cytoplasm of AMF spores is a mechanism that 
allows the survival of other AMF spores allowing the functionality and the coloniza-
tion of roots of host plants in the Cu-contaminated environment (Cornejo et  al. 
2013) Another mechanism corresponds to the generation and accumulation of glo-
malin in the soil. The glomalin is a glycoprotein of fungal origin that has the ability 
to sequester various HM, such as Cu and Zn, also contributing to the stabilization of 
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highly contaminated soils, such as those described in the Puchuncaví Valley 
(Cornejo et al. 2008, 2017a, b).

In Central Chile, some populations of plants naturally generate tolerance mecha-
nisms against the presence of metals in contaminated soils, such as Oenothera 
picensis and Imperata cylindrica (Meier et  al. 2012b, Fig.  11.1b, c). In a study 
regarding the effects of inoculation with AMF in Cu-contaminated soils, the effi-
ciency of a consortium including AMF adapted to Cu (obtained from soils at the 
Puchuncaví valley) was compared with the fungus Claroideoglomus claroideum 
(obtained from agricultural soils in the southern Chile and presumably not Cu toler-
ant, Fig.  11.1e) in plants of O. picensis, I. cylindrica, and Helianthus annuus. 
Results showed that C. claroideum produced better behavior in terms of plant estab-
lishment and growth, suggesting its capability to be used in phytostabilization pro-
grams of Cu-contaminated soils (Meier et al. 2012b). Microorganisms isolated from 
contaminated soils are considered to have better tolerance levels compared to other 
organisms isolated from non-limiting conditions. In this case, C. claroideum, and 
especially the production of high levels of glomalin, seems to be responsible for this 
increased tolerance. In the same way, the use of O. picensis together with the AM 
fungus C. claroideum resulted in an optimal alternative to perform the Cu phytosta-
bilization in contaminated soils from central Chile (Cornejo et al. 2017a).

In soils contaminated with Cu, the AMF favored the colonization and propaga-
tion of Baccharis linearis (Fig. 11.1d). In detail, root colonization improved the soil 
water retention capacity allowing the development of exploratory plant tissues. 
However, high levels of Zn in the tailings decreased the AMF colonization (Menares 
et al. 2017), which also highlights the need to seek solutions that include the multi- 
contaminated condition of these environments, where several toxic elements may be 
present at the same time.

Another alternative to promote the plant growth in Cu-contaminated environ-
ments is the use of organic amendments to increase the efficiency of phytostabiliza-
tion programs (Medina et al. 2015). In this sense, the addition of agro-industrial 
organic wastes has been carried out, such as sugar beet wastes, together with the 
inoculation of AMF adapted to high Cu levels. The interaction of both technologies 
allowed an increased establishment of O. picensis seedlings under high soil Cu 
concentrations, mainly due to the increase of AM root colonization (Meier et al. 
2011, 2015, Fig. 11.1f). Recently, the incorporation of compost also improved the 
response of O. picensis plants inoculated with C. claroideum directly growing in Cu 
mining tailings. The results showed a decreased Cu bioavailability and also increased 
the production of photosynthetic pigments, which generated notable increases in 
plant growth (Pérez et  al. 2021). Another study reported that the inoculation of 
O. picensis plants with AMF in conjunction with the addition of biochar strongly 
contributed to decrease the concentrations of bioavailable Cu in soil. This generates 
a decrease in the Cu concentrations in parallel with an improvement of the rhizo-
sphere environment, which increased the density and diversity of soil microorgan-
isms as well as the plant growth, suggesting the use of this amendment in the 
sustainably phytoremediation of metal-contaminated soils (Meier et al. 2017a, b).
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Fig. 11.2 The study site in Bouwer city (Córdoba, Central Argentina). (a) The smelter factory, (b) 
slag of batteries, (c) Gigaspora decipiens Scale: 0.5 mm, (d) Denticustata biornata Scale: 0.5 mm. 
Photo’s credits: J. Salazar, E. Menoyo, and A. G. Becerra

11.3.2  Central Argentina

In Córdoba province, central Argentina, Bouwer city is located. In this locality, a 
former battery operated between 1984 and 2005. The smelter worked inappropri-
ately, without emission control and an inadequate waste disposal (Fig. 11.2a, b). 
Salazar and Pignata (2014) reported the presence of diverse HM: Zn, Co, Cu, Ni, 
Mn, Fe, and Pb around the smelter. The battery recycling factory was closed in 
2005, and the affected area has not received any treatment for its ecological restora-
tion. In the place, high levels of Pb contamination exceed the limits for industrial 
land use; the Argentinean legislation (Law 24051-1991) contemplates 1000 mg kg−1.

The AMF community (morphological and molecularly) was described in the rhi-
zosphere of native (Bidens pilosa, Tagetes minuta) and exotic metallophyte herbs 
(Sorghum halepense) on different levels of Pb around the smelter. A total of 24 
morphotypes of AMF including Acaulosporaceae, Claroideoglomeraceae, 
Gigasporaceae, Glomeraceae, Paraglomeraceae, and Entrophospora, Incertae sedis, 
were determined in the rhizospheric soil. By molecular approach, a total of 115 
virtual taxa (VT) of AMF were detected. VT richness was negatively correlated with 
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soil Pb concentration (Faggioli et al. 2019). According to the soil Pb level, the AMF 
taxonomic groups varied being Paraglomeraceae and Glomeraceae the predominant 
families stated present in a control site and in Pb-contaminated soil. Acaulosporaceae, 
Ambisporaceae, Archaeosporaceae, Claroideoglomeraceae, Diversisporaceae, and 
Gigasporaceae were less abundant. However, a noteworthy increase of Gigasporaceae 
was found in the soils with higher Pb content.

Differential taxonomic responses to Pb concentration suggest that some AMF 
species are less affected by these stressed conditions. Probably, these species have 
developed any survival strategy in sites with HM. The immobilization of HM in dif-
ferent fungal structures that allows alleviating their phytotoxicity may be one of the 
prevailing mechanisms. This was recorded for Al (Aguilera et al. 2011), Cu (Cornejo 
et al. 2013), and Cr (Gil-Cardeza et al. 2014). Thus, the capability of the AMF com-
munity present in Pb-polluted soils is to accumulate this HM in spores. The HM 
accumulation is dependent on the combination AMF-plant species (Salazar et al. 
2018). Considering AMF spore community, high Pb concentrations were registered 
in these structures of resistance. Analyzing AMF species, in the site with more Pb 
content (16186 μg  g−1), the most abundant spores belong to the Gigasporaceae: 
Gigaspora decipiens and Denticustata biornata (Fig. 11.2c, d). Both species accu-
mulated Pb in spores (Salazar et al. 2018).

Surrounding the smelter, there is an agricultural area with Sorghum bicolor 
crops. Blanco et al. (2016) analyzed the relationship between Pb accumulation and 
the toxicological human risk of this crop. Since S. bicolor accumulated Pb in the 
roots, these crops could have a phytostabilization role in soils with high Pb level. 
Regarding the rhizospheric microorganisms, the relative abundance of AMF fami-
lies varied along sites with different Pb content (Fig. 11.3). Glomeraceae was pres-
ent in all study sites. Notably, in the sites with high Pb (1104–145 mg kg−1), the 

Fig. 11.3 Relative abundance of AMF families present in the Sorghum bicolor rhizosphere sam-
pled in four sampling sites from an agricultural area in Bouwer. Sites 1 and 2 closer to the smelter 
factory. Sites 3 and 4 far away from the smelter factory
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proportion of Glomeraceae was higher, between 77% and 92% of the spores 
belonged to this taxonomic group. Another noticeable result was the variation in the 
relative abundance of Gigasporaceae. Although this family was present at low pro-
portion, it was only registered in the most contaminated sites (868–1104 mg kg−1). 
In contrast, Acaulosporaceae increased the frequency as the Pb content of the soils 
decreased. Thus, there are AMF species resistant, sensitive species, and indicator 
species of soils contaminated with Pb.

The environmental phytoremediation practices should not exclude the study of 
the combination between plant species and their native fungal symbionts. In these 
combinations, the most tolerant associations to HM should be detected representing 
a biological source of great potential for use in soil phytoremediation strategies.

11.4  Conclusion

Soil pollution is a global threat that affects every ecosystem and region worldwide. 
To remediate or minimize soil pollution, it should have considered the phytoreme-
diation process. In order to restore contaminated soils, it is necessary to identify and 
characterize metallophyte/hyperaccumulator plants, including their AM status. 
Here, we summarized the studies carried out in South America providing informa-
tion about the arbuscular mycorrhizal status of metallophyte/hyperaccumulator 
plants. Knowing the AM status of these plants is a promising field and needs to be 
addressed in phytoremediation processes. As evident in this chapter, the current 
knowledge regarding AM status of metallophyte/hyperaccumulator flora is still 
incipient. Regarding the relationship between AMF symbiosis in soils from Chile 
contaminated with Cu, it is noticeable that the fungus Claroideoglomus claroideum 
is an optimal alternative to perform the Cu phytostabilization in contaminated soils 
from central Chile. Besides, the use of organic amendments in Cu-contaminated 
environments is an important alternative to promote plant growth and to increase the 
efficiency of phytostabilization programs. In Central Argentina, the AMF commu-
nity showed a high tolerance to Pb-polluted soils and accumulated this pollutant 
inside spores. Besides, Paraglomeraceae and Glomeraceae are the predominant 
families present in Pb-contaminated soil. A noteworthy increase of Gigasporaceae 
was found in the soils with higher Pb content. Consequently, further research is 
necessary on the interaction of HM-AMF-metallophytes especially regarding the 
phytoremediation with mycorrhizas.
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12.1  Introduction

12.1.1  Mycorrhizas in Patagonian Woodlands

The Patagonian Andes of Argentina harbor more than 4.2 million hectares of mycor-
rhizal native tree species, comprising Nothofagaceae Kuprian., Araucariaceae 
Henkel & W. Hochst., and Cupressaceae Rich. ex Bartl. (Rojas et al. 2011), as the 
most oustanding families. They coexist with more than 120.000 ha of implanted 
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forests, including Pinus ponderosa Dougl. ex Laws., P. radiata D. Don, Pinus con-
torta var. latifolia (Engelmann) Critchfield and P. contorta var. murrayana (Balfour) 
Engelmann, Pseudotsuga menziesii (Mirb.) Franco, Salix L spp., and Populus 
L. spp. (Peri et  al. 2016; MinAgrI 2017). Furthermore, around 2,225,000  ha of 
grasslands in the Patagonian ecotone are suitable for fast-growing exotic conifer 
plantations (MinAgrI 2017).

Mycorrhizas are one of the most important and ecologically crucial symbiosis 
for boreal, temperate, subtropical, and tropical forests, driving plant population 
biology and community ecology by affecting their dispersal and establishment, 
regulating plant coexistence (Tedersoo et al. 2020). On the other hand, Soudzilovskaia 
et al. (2019) analyzed the relation between the dominance of mycorrhizal types and 
soil carbon (C) stocks, showing that across large geographical scales, higher cover 
of ectomycorrhizal (EM) vegetation is broadly associated with greater soil C stocks 
in both topsoil and subsoil; their analysis also suggests that EM biomass has 
declined in all continents, primarily due to a replacement of natural forests by agri-
cultural lands, so restoration of native vegetation, especially in abandoned agricul-
tural and barren land, may help alleviate anthropogenic soil C losses and ameliorate 
increases in atmospheric greenhouse gasses.

Native forests and afforestation from Argentinian Patagonia present different 
types of obligate mycorrhizal associations, needed for the establishment and growth 
of these tree species (Carrillo et al. 1992; Horton et al. 1999). Nothofagaceae forests 
are distributed between 33° and 56° S and comprise six species forming extensive 
monospecific and also mixed forests, all of them EM symbionts (Singer and Morello 
1960; Carrillo et  al. 1992). Cupressaceae species comprise the iconic Araucaria 
araucana (Mol.) K. Koch, which grows only in Neuquén province; the relictual, 
giant, and longest living species Fitzroya cupressoides (Mol.) Johnst., Austrocedrus 
chilensis (D. Don) Pic. Serm. & Bizzarri, and Pilgerodendron uviferum (D. Don) 
Florin are all obligate arbuscular mycorrhizal (AM) hosts (Fontenla et al. 1998). All 
nontarget or understory species in Nothofagacea and Cupressaceae forest are AM or 
ericoid hosts, with the exception of the non-mycorrhizal Lomatia hirsuta Diels ex 
J. F. Macbr. (Fontenla et al. 1998; Bruzone et al. 2015). Regarding afforested spe-
cies, all Pinus spp. are obligated EM, while P. menziesii and Salicaceae Mirb. are 
able to form dual mycorrhizas (i.e., simultaneously associate with AM and EM 
fungi) (Horton et al. 1999; Gehring et al. 2006; Salgado Salomón et al. 2013a, 2018).

12.1.2  Anthropic Impacts on Forests

Forest fragmentation, clear-cutting, fires, grazing, and partial conversion to exotic 
plantations are affecting the temperate forests of Southern South America (Fig. 12.1) 
at an increasing rate (Mohr-Bell et al. 2019). It is estimated that about 50% of the 
native Patagonian forest is degraded by these mentioned anthropic actions (Peri and 
Ormaechea 2013; Mohr-Bell et al. 2019). Disturbances alter biological diversity, 
which includes mycorrhizal associations (Sapsford et  al. 2021). Regarding 
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Nothofagaceae forests, the most distributed species N. pumilio (Poepp. & Endl.) 
Krasser and N. antarctica (G. Forst.) Oerst. suffer herbivory and impacts of fire 
(Fig.  12.1c), the former by both cervids and cattle (Fig.  12.1f) (Quinteros et  al. 
2017) with an increased frequency of forest fires during the last decades (Mundo 
et  al. 2017) that are preventing their regeneration. Nothofagus antarctica forests 
show approximately 90% of its stands affected to silvopastoral systems, often asso-
ciated with burning to promote grass production (Peri and Ormaechea 2013), sus-
taining sheep and cattle raising, and providing some wood products including poles, 
firewood, and timber for rural construction purposes (Peri and Ormaechea 2013). 
On the other hand, Austrocedrus chilensis, the native conifer with wider distribu-
tion, exhibit large degraded areas as it has been widely exploited for its wood qual-
ity (Aparicio et al. 2009), for cattle grazing (Quinteros et al. 2017), and also because 
of the large mortality originated by the accidental introduction and spread of the 
exotic Phytophthora austrocedri Gresl. & E.M. Hansen (Fig. 12.1a) (Greslebin and 
Hansen 2010; Vélez et al. 2014).

Even Patagonian forests have been reported as fire adapted, 95% of forest fires in 
Patagonia have anthropic causes, either intentional or through negligence (SAyDS 
2012). The frequency of fire occurrence and level of intensity have increased during 
the last decade; between 2001 and 2009, 8.837 ha have been burned, between 2009 
and 2013, 11.920 ha, and between 2013 and 2017, 43.583 ha, showing an acceler-
ated intensification (Moreno et  al. 2018; Mohr-Bell et  al. 2019). Years of severe 
drought with the unprecedented combination with warm summers have been creat-
ing conditions favorable to widespread, more frequent, and severe fires than in the 

Fig. 12.1 (a) “Mal del Ciprés” caused by P. austrocedri, detail: asexual zoosporangium (Ph. ML 
Vélez), (b) burnt and unburnt A. chilensis forest, (c) burnt and unburnt Nothofagus forest, (d) 
Trufficulture, oaks inoculated with T. melanosporum, detail: black truffles, (e) N. dombeyi forest 
invaded by A. muscaria, detail: A. muscaria basidiome, (f) Silvopastoral system, N. pumilio forest 
affected by cattle, detail: browsed seedling. Photo’s credits: J. O. Bava
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past several centuries (Moreno et al. 2018). Although ecosystems experience a con-
stant process of adaptation, the effects of Climate Changes caused by anthropogenic 
activities suppress the natural ability of ecosystems to adapt and be resilient, affect-
ing the geographical location, species diversity, and dynamic balance of ecosys-
tems, diminishing their ability to grant benefits to society (Córdova and Blanco 
2009). Projections made by the Intergovernmental Panel on Climate Change (IPCC 
2021) warn that during the 20  th century, tree mortality and forest decay will 
increase driven by the interaction of pathogens spread, forest fires, biological inva-
sions and drought, risking ecosystem’s C storage, biodiversity conservation, soil 
stability, wood production and aesthetic values (IPCC 2021; Robinson et al. 2020).

The course of native forest invasion with exotic introduced trees planted in 
Patagonia also raise concerns about their effects on native trees and their associated 
mycorrhizal biota. Some studies have alerted that the presence of invasive plants 
can decrease, sometimes drastically, the mycorrhizal colonization of native plants, 
causing the absence of new native seedlings (Inderjit et  al. 2006; Mummey and 
Rillig 2006; Zhang et al. 2007; Rudgers and Orr 2009), maladaptation processes 
(Kranabetter et al. 2015), and/or changes on the mycorrhizal community diversity 
(Dickie and Johntson 2008; Dunk et al. 2012; Policelli et al. 2019).

12.2  Arson Forest Fire and Mycorrhizas

Fire alters soil properties and reduces the microbial activity, causing deep changes 
on nutrient availability and directly impacting the vegetation recovery (McMullan- 
Fisher et al. 2011). Particularly, EM fungi are affected by fire through the increase 
of soil temperature, the combustion of the organic layer that removes litter and 
woody debris, the deposition of ashes, the soil surface runoff (Cairney and Bastias 
2007), and the detrimental effects on fungal mutualistic partners, affecting mycelia 
and fruit bodies occurrence needed for spore dispersal (Dahlberg 2002). Additionally, 
fire causes the loss of vegetation and thus the lack of colonizable roots, disrupting 
the continuity of the mycorrhizal interaction and affecting the life cycle of the EM 
fungi (Rincón et al. 2014). When tree species are obligatory mycorrhizal, post-fire- 
regenerated seedlings are highly dependent on the availability of active EM fungal 
propagules in soil (i.e., mycelium, spores) to establish the symbiotic partnership 
that will help them to cope with the adverse environmental conditions imposed by 
fire (Dahlberg et al. 2001; Buscardo et al. 2011).

Some studies carried out in Patagonia after forest fires show that impact on 
mycorrhizal community depends on fire intensity, site features, and in the time 
elapsed since the disturbance (Palfner et al. 2008; Longo et al. 2011; Talarico et al. 
2017, Chávez et al. 2020), in agreement with what has been previously reported in 
forests from other parts of the world (Cairney and Bastias 2007). In Nothofagaceae 
sites recently burned, it was found that EM colonization was lower compared with 
no burned sites, but the difference disappears after 6–10 years (Palfner et al. 2008; 
Longo et al. 2011). However, Longo et al. (2011) found no significant differences in 
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EM species diversity, while Palfner et  al. (2008) found that post-fire conditions 
clearly favor Descolea antarctica Singer as an early EM colonizer of Nothofagus 
Blume seedlings. Regarding the direct effects of fire on AM fungi, results have been 
contradictory, reporting either negative (e.g., Valariño and Arine 1991; Allsopp and 
Stock 1994), neutral (e.g., Treseder et al. 2004; Docherty et al. 2012), or positive 
effects on spore abundance (Eom et al. 1999; Moreira et al. 2006). A study carried 
out in burned Austrocedrus chilensis forest in Patagonia (Fig. 12.1b) showed that 
AM spores were significantly more abundant under moderate fire severity compared 
with unburned or high severity and that these differences disappear after 5 years 
(Talarico et  al. 2017; Salgado Salomón et  al. unpublished). However, seedlings 
grown on soils recently burned showed low rate of AM colonization, regardless of 
fire severity, showing that spore abundance did not correlate with infectivity; non-
burned soils showed 40% higher AM colonization than moderate and severe burned 
soils (Salgado Salomón et al. unpublished).

Thinking in restoration strategies, the analysis of fire intensity and the evaluation 
of surviving trees and viable soil inocula seem necessary in order to define seedlings 
inoculation strategies, accounting for tree species diversity present in the area, along 
with suitable EM species (Barroetaveña et  al. 2019) or AM fungi in the case of 
Cupressaceous and other tree and shrub species (Cofré et al. 2019).

12.3  Tree Species Introduction and Mycorrhizas

The introduction of exotic conifers with productive purposes, with partial shrub-
lands/forest conversion to exotic plantations, became a source of controversy 
(Gyenge et al. 2010), as tree introductions lead to their EM-associated species intro-
duction. This has been widely shown for exotic EM species spread in Patagonia 
(Barroetaveña et al. 2005, 2006, 2007, 2010; Salgado Salomón et al. 2011, 2013b, 
2018; Hayward et al. 2015; Policelli et al. 2019) as well as in other Nothofagaceae 
ecosystems from New Zealand (Dickie et al. 2010; Moeller et al. 2015).

The ectomycorrhizal species richness associated with P. ponderosa and P. men-
ziesii in Patagonian plantations (Argentina) is very reduced compared with their 
native forests; 18 taxa from P. ponderosa plantations versus 157 from native forests 
and 15 taxa from P. menziesii plantation versus 514 from native forest were reported; 
among them, 28% of the former were recorded from native P. ponderosa forests and 
60% of the latter recorded from native P. menziesii  forests (Barroetaveña et  al. 
2007). Considering that some of these EM species have cosmopolitan distributions, 
such as Hebeloma mesophaeum (Pers.) Quél. and Wilcoxina Chin S. Yang & Korf 
spp., and have been reported from both conifer plantations and Nothofagaceae for-
ests (Salgado Salomón et al. 2018; Barroetaveña et al. 2019), along with the recent 
register of Amanita muscaria (L.) Lam. fruiting in pure N. dombeyi (Mirb.) Oerst. 
stand (Giles et al. 2020), there is increasing concern about the process of “switch-
ing” host and maladaptation facilitated by shared EM (Fig. 12.1e).
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12.3.1  Mycorrhizal Maladaptation

The positive fitness of plants with mycorrhizal fungi leads to local co-adaption, 
feedback expected to occur through coevolutionary time. In contrast, when plant 
and fungal relative fitness are negatively correlated, this negative feedback will lead 
to maladaptation (Bever 1999; Klironomos 2003), defined as a relative decline in 
the associated tree species due to altered mycorrhizal communities occurring in 
native settings (Kranabetter et  al. 2015). This dynamic can be similar to that 
observed in host-enemy coevolution, where rapidly evolving enemies often exert 
more negative effects on hosts (Hoeksema and Forde 2008). Several authors have 
described negative effects on seedling fitness and establishment, drought tolerance, 
N uptake, along with pathogens outbreak due mycorrhizal maladaptation process 
(McCarthy-Neumann and Ibañez 2013; Bagchi et al. 2014; Kranabetter et al. 2015; 
Rúa et  al. 2016; Gehring et  al. 2017). The presence of invasive plants can  also 
decrease, sometimes drastically, the mycorrhizal colonization of native plants, caus-
ing the absence of new native seedlings in invaded sites (Mummey and Rillig 2006; 
Zhang et  al. 2007). The decreased or null Nothofagaceae seedling recruitment 
detected in invaded native forests with P. menziesii in Patagonia (Salgado Salomón 
et al. 2013a) was further analyzed with a soil bioassay in an invasion matrix. That 
study showed that seedling grown in soil from invaded stand presented significantly 
lower shoot dry weight and height, collar diameter, root-specific length index, and 
less survival rate (40%) that were always associated with lower EM colonization 
rates compared with those grown in soils from non-invaded stands (Salgado 
Salomón et al. 2018). Even though the mechanism involved in this drastic decline in 
mycorrhizal colonization is not clear, some authors have hypothesized it can be due 
to modified site’s biochemical features, allelopathic effects, shifts in mycorrhizal 
communities, and/or inhibition processes (Inderjit et  al. 2006; Rudgers and 
Orr 2009).

In the Climate Change context, forest species migrations are expected and deter-
mined either by population expansion into new habitat range or population retreat 
from historical habitat range (IPCC 2021). Thus, EM maladaptation raises concern 
about survival and productivity of forest species experiencing rapid shifts in site 
features, with the potential risk of a mismatch in host genetics with native mycor-
rhizas that results in maladaptation for the associated tree species (Winder 
et al. 2021).

12.3.2  Switching Host

Ectomycorrhizal fungi have been considered mainly host-specific (Borowicz and 
Juliano 1991; Newton and Haigh 1998), because of the fungi and plant host coevo-
lution. Host specificity refers to a relationship in which a fungus derives its nutrition 
from a live host plant during some phase of its life cycle and is restricted to a 
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particular host or group of related species but does not occur on other unrelated 
plants in the same habitat (Zhou and Hyde 2001). However, there are contradictory 
observations concerning this statement; some researchers have found no host speci-
ficity in some conifers (Horton and Bruns 1998), or species in symbiosis with a 
comparatively wide range of hosts (Bobbu 2016).

Some EM fungi have been observed “switching” associated tree species from 
exotic conifers to Nothofagus forest in Patagonia. Hebeloma hiemale and Wilcoxina 
sp., common mycorrhizal partners for P. menziesii (Barroetaveña et al. 2007) and 
not previously reported from Nothofagaceae forest, were found associated with 
N. antarctica seedlings (Salgado Salomón et al. 2018). On the other hand, a native 
Pyronemataceae EM species was found associated with invasive P. menziesii seed-
lings (Salgado Salomón et al. 2018). Also, forest ranger reports from Los Alerces 
and Lago Puelo National Parks (Chubut, Argentina) indicate Amanita muscaria, a 
species present in Patagonia and central Argentina associated with Pinaceae 
(Daniele et al. 2005; Barroetaveña 2006), is fruiting in pure, non-invaded N. dombeyi 
stands, indicating it should be forming EM with this species, the only ectotrophic 
one (Giles et  al. 2020). Amanita muscaria occurs naturally in the Northern 
Hemisphere as an EM associated with pine, spruce, fir, cedar, chestnut, and birch. A 
similar process has been reported with this EM species in Nothofagaceae forests 
from New Zealand, Tasmania, and Australia (Robinson 2010; Dunk et al. 2012). 
Even though more exhaustive studies are needed, the high density of A. muscaria 
sporocarp production implies a high level of resource capture, impacting on critical 
endangered EM native species from those Nothofagaceae forest (Dickie and 
Johnston 2008), process that would also need to be elucidated in Patagonia.

12.4  Introduced Plant Pathogens and Mycorrhizas

Numerous studies have proposed that mycorrhizal fungi (either AM or EM) have 
the ability to protect host plants from attack by radical pathogens such as 
Phytophthora de Bari, Fusarium Link, Pythium Ness, Gaeumannomyces Arx & 
D.L. Olivier among other diseases (Alejo-Iturvide et al. 2008; Castellanos-Morales 
et al. 2011; Elmer and Pignatello 2011; Durán et al. 2018; Chu et al. 2019, 2021; 
Ravnskov et al. 2020; Nakashima et al. 2021). However, this protective role is not 
entirely clear and would be conditioned by the species combinations, the mycor-
rhizal colonization rates, and the environmental conditions (Vierheilig et al. 2008; 
Khaosaad et al. 2007; Veresoglou and Rillig 2012). No experiences of EM pathogen 
biocontrol have been yet published to our knowledge, regarding Patagonian forests 
or nursery seedlings.

The native A. chilensis forest currently under a process of severe decline due to 
the widespread and injurious pathogen Phytophthora austrocedri Gresl. and 
E. M. Hansen (Greslebin and Hansen 2010) shows an interesting interaction model 
with its AM colonization. Phytophthora austrocedri was identified as an introduced, 
although not previously reported, soil pathogen (Vélez et  al. 2014, 2020). In a 
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preliminary work carried out with A. chilensis seedlings from affected stands, it was 
found that affected seedlings had a significantly higher AM colonization than 
healthy ones (Salgado Salomón et  al. 2014, Salgado Salomón unpublished). 
Furthermore, a wider ecological survey of seedlings from affected stands indicates 
that in P. austrocedri presence, A. chilensis could induce changes in AM coloniza-
tion, promoting higher abundance of arbuscules and coils; on the other hand, healthy 
seedlings showed lower rates of colonization and higher abundance of vesicles 
(Salgado Salomón unpublished). As the infection with P. austrocedri decreases 
A. chilensis hydraulic conductivity (Vélez et  al. 2012, Troncoso and Greslebin 
2018), the increased AM colonization could be due to a plant attempt to supply this 
deficiency. It should be remarked that nursery studies with the other native 
Cupressaceae Fitzroya cupressoides and Pilgerodendron uviferum also showed high 
indexes of tissue affectation and mortality caused by this pathogen (Taccari et al. 
2019), warning of the extreme vulnerability of these endangered tree species. More 
studies are required to validate and understand the disease complex ecology of the 
lethal P. austrocedri and the possible protective effects of programmed AM inocula-
tion, considering that AM taxa diversity is still unknown for Patagonia.

There is clear experimental evidence that AM and EM fungi can act as biocontrol 
agents in a range of systems. However, this may go unnoticed in the environment 
when improved plant growth is the only measure of efficacy available; direct com-
petition or inhibition, biochemical changes associated with plant defense mecha-
nisms or induced resistance, and development of an antagonistic microbiota may all 
be taking place. The current application of molecular analytical techniques prom-
ises that features driving biocontrol activities in mycorrhizas will begin to be under-
stood (Chu et al. 2019, 2021; Ravnskov et al. 2020).

12.5  Fertilization, Nutrition and Mycorrhizas

Studies on mature forests of NW Argentinean Patagonia indicated that N is the main 
growth-limiting nutrient in most dominant tree species, while P limitation is uncom-
mon, despite the soil’s volcanic origin, which are characterized by low atmospheric 
N deposition and high plant N conservation (Pérez et al. 2003; Diehl et al. 2008; 
Godoy et al. 2009). Although P availability in Andisols is low due to high P reten-
tion, no evidence of P limitation was found in nine out of the ten dominant tree 
species in mature forests of Argentinian Patagonia, a fact that was attributed to high 
mycorrhizal infection (Diehl et al. 2003, 2008). As threshold values for foliar N/P 
had been suggested as a useful predictor of nutrient limitation in terrestrial ecosys-
tems, Agüero et al. (2014) conducted a greenhouse trial with seedlings of Lophozonia 
alpina (Poepp. & Endl.) Heenan & Smissen and L. obliqua (Mirb.) Heenan & 
Smissen, using soil characteristic of each species. Seedlings were fertilized with 
three levels of N (100, 200, and 400 mg kg−1 soil) with or without the concurrent 
application of a single P dose (60 mg kg−1 soil) during their second growing season. 
They showed that N primarily limited both species: the addition of N resulted in 
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higher shoot and root masses, an increased number of nodes, taller stems, and 
greater basal and root diameters, while P did not show any effect. N/P ratios in green 
leaves and N and P resorption proficiencies indicate that with increased N, P avail-
ability can become a secondary limiting nutrient for L. alpina. This was accompa-
nied by the maintenance of EM infection and mass allocation to roots in this species. 
Anyway, a trend toward decreased ectomycorrhizal infection with increased nutri-
ent addition was observed; L. obliqua colonization decreased significantly from 
67% in the control to 47–57% in four of the six fertilized treatments (the lowest 
value corresponding to 400 N+P), whereas in L. alpina, a significant decrease, from 
61% to 51%, was found only in one treatment (400 N) relative to the control. 
Lophozonia alpina seems to be more sensitive to P limitation than L. obliqua since 
it has half the concentration of foliar P and occupies soils with lower P availability 
(Satti et al. 2007). Adaptation to the low P availability of volcanic soils through high 
EM infection and mass allocation to roots might have contributed to their null or 
marginal responses to P addition. The association of EM infection with P acquisi-
tion by tree species has been highlighted in several previous studies (Plassard and 
Dell 2010).

Pinus ponderosa seedlings produced in greenhouses with high levels of fertiliza-
tion, without EM inoculum applications, showed low or null EM infection at the end 
of nursery stage but had satisfactory performance in plantation sites during the first 
years. In order to elucidate this paradox, Salgado Salomon et al. (2009) studied the 
EM status of greenhouse P. ponderosa seedlings produced under these high fertil-
ization regimes and inert substrate. They showed that seedlings had null or very low 
levels of mycorrhization and low morphotype’s richness at the moment of planta-
tion, but showed very high mycorrhizal percentages after 6  months maintained 
under greenhouse conditions without fertilization and after 24 months in field con-
ditions. Massone (2020) studied the effect of fertilization on A. chilensis AM status 
through a greenhouse bioassay with inert substrate controlling P availability and 
without AM inoculum management. He found that 1 ppm P concentration produced 
a higher AM colonization rate than 10 or 100 ppm, although it was never null, and 
that those differences disappeared after a year in pots or under field conditions, 
without fertilization. In both cases, the analyzed nurseries fortuitously incorporated 
mycorrhizal inoculum that rapidly colonized seedlings, during the fertilization or 
immediately after it was interrupted. These facts demonstrated again that the 
hypothesis that nursery seedlings can establish and grow without mycorrhizal sym-
bioses is false.

High doses of NPK fertilization are currently used to fasten tree growth and 
reduce production time in Patagonian nurseries (Massone 2020), although extensive 
evidence accounts for the inhibitor effect of this practice on seedling mycorrhiza-
tion (Salgado Salomón et al. 2009). Many other studies are needed to define the 
adequate doses, type, and application regimes of fertilizer to be used in seedling of 
most tree species produced in Patagonia, in order to establish fertilization regimes 
that adjust conditions for both prolific mycorrhization and reasonable production 
cycles in financial terms (Óskarsson and Halldórsson 2008).
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12.6  Mycorrhizal Inoculations

Tree inoculation with mycorrhizal fungi during nursery cultivation increases plant 
growth and improves subsequent performance under natural conditions when they 
are outplanted to the field (Rincón et al. 2005, 2007; Oliveira et al. 2010). Restoration 
efforts with Nothofagus spp. in partially or completely degraded forests converted 
to grasslands can be limited by a lack of remaining EM inoculum. However, the 
degree of mycorrhizal inoculum limitation and how far mycorrhizal inoculum 
spreads to degraded or lost Nothofagus areas need further analysis. A lack of mycor-
rhizal infection may slow tree establishment, particularly in combination with other 
environmental filters such as competition, but cannot be taken as an absolute barrier 
to tree expansion (Dickie 2007). Facilitation of seedling mycorrhizal infection 
across plant species has been demonstrated in some other systems such 
Arctostaphylos Adans.–Pseudotsuga Carrière (Horton et al. 1999), Helianthemum 
Miller–Quercus L. (Dickie et al. 2004), Salix L.–Betula L.–Larix Mill. (Nara 2006), 
Arbutus L.–Quercus L. (Richard et al. 2009). Moreover, a widespread native genus 
of Myrtaceae trees in New Zealand are able to form symbioses with both AM and 
EM fungi (Weijtmans et al. 2007), which permit them to establish into AM grass-
lands and accumulate ectomycorrhizal fungal inoculum that thereby facilitate 
Nothofagaceae establishment (Dickie et  al. 2012). In Patagonia, no native dual 
mycorrhizal shrubs or trees are known that can fulfill a cross-species facilitation 
role for Nothofagaceae forests. Nursery seedling inoculation with suitable and 
adapted EM species seems the only strategy to plan successful restoration actions.

In this frame, it is necessary to determine fungal species that can increase tree 
tolerance to adverse conditions and are suitable to be utilized as mycorrhizal inocu-
lants. Little is known regarding how the mycorrhizal symbiosis varies according to 
Nothofagaceae species growth stages and to the altered site conditions of degraded 
lands to be reforested in Patagonia. Many EM species are specific or dominant in 
specific plant growth stages, so it is important to know which one are present and 
common during the seedling stage to select candidate species for nursery inocula-
tions (Barroetaveña et al. 2019). Several EM taxa have been reported from nurseries 
and naturally established Nothofagaceae seedlings as Descolea Singer (Palfner 
et  al. 2008; Valenzuela et  al. 2008; Álvarez et  al. 2009; Fernández et  al. 2015; 
Salgado Salomón et al. 2018), Hebeloma (Fr.) P. Kumm. (Fernández et al. 2015; 
Salgado Salomón et al. 2018), Sebacina Tul. & C. Tul., Inocybe (Fr.) Fr., Laccaria 
Berk. & Broome, Genea Vittad. (Fernández et  al. 2015; Marín et  al. 2018), 
Tomentella Pers. ex Pat. (Kuhar et al. 2016; Fernández et al. 2015; Salgado Salomón 
et  al. 2017, 2018), Clavulinaceae Donk (Fernández et  al. 2015), Thelephorales 
Corner ex Oberw. (Fernández et al. 2015), and Pyronemataceae Corda (Fernández 
et  al. 2013; Salgado Salomón et  al. 2018). It is important to remark that non- 
artificially inoculated L. alpina nursery seedlings have been reported colonized by 
naturally established EM after 1 year (Fernández et al. 2013), although the abun-
dance and diversity of ectomycorrhizal fungi found in those seedlings compared 
with naturally established L. alpina specimens were different (Fernández et  al. 
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2015), so inoculation programs should not rely on this fortuitous colonization when 
offering EM-inoculated seedling, at least not before checking EM tip identities.

The endemic genus Descolea has been widely studied (Kuhar et  al. 2017). 
Palfner et al. (2008) demonstrated that D. antarctica, with previous reports of suc-
cessful mycelial inoculations by Valenzuela et al. (2008), was the most abundant 
fungal symbiont on post-fire seedlings of Lophozonia alpina, suggesting it behaves 
as an early-stage symbiont. Available data also suggest that species of Descolea 
may be among the most saprotrophically active EM fungi (and so easy to grow in 
axenic cultures) due to highly adaptable enzymes (phosphatases, amylases, cellu-
lases) that are active over a wide pH and temperature range (Álvarez et al. 2004; 
Valenzuela et al. 2008). Alberdi et al. (2007) found that the inoculation of N. dombeyi 
seedlings with D. antarctica or Pisolithus tinctorius (Mont.) E. Fisch. favored a bet-
ter functionality maintenance of the photosynthetic apparatus under drought com-
pared with non-EM seedlings, and those plants colonized by D. antarctica were less 
physiologically stressed than seedlings inoculated with P. tinctorius. Moreover, 
since the sequestrate D. brunnea (E. Horak) Kuhar, Nouhra & M.E. Sm. may con-
stitute an important source of spore inoculum (Kuhar et al. 2017), while other spe-
cies are easily cultivable, the genus came up as a promising greenhouse inoculant to 
produce EM Nothofagaceae seedlings for reforestation. Other species such as 
Laccaria laccata (Scop.) Cooke has been reported as a growth promoter for N. pum-
ilio seedlings (Marín et al. 2018).

Inoculation with spores has been proposed because they are easy to apply, do not 
require expensive infrastructure nor qualified personnel for their production, are 
very abundant in several fungal species, are low volume and easy to handle, and 
tolerate long storage periods (Barroetaveña et  al. 2019; Bassani et  al. 2013). 
Anyway, to broaden the perspective of EM species best suited to inoculate nursery 
plants, especially for those with low frequency of fruiting, small amounts of spores 
or corticioid habit, culture obtention, and mycelium inoculum production are 
required to further test mycorrhizal infection and field performance. Vegetative 
inoculum has been reported as more convenient for certain species, but its produc-
tion is difficult and expensive to carry out (Brundrett et al. 2005).

Ectomycorrhizal species suitable for nursery inoculation and good field perfor-
mance have been studied for P. ponderosa planted in Patagonia (Barroetaveña et al. 
2012, 2016). Considering inoculations with highly prized edible EM species, Pérez 
et al. (2007) showed that it is possible to infect L. obliqua with the Périgord black 
truffle (Tuber melanosporum Vittad.) under greenhouse conditions, which allows 
the possibility of cultivating this truffle as a secondary crop during reforestation. 
Trufficulture is a young productive activity in Patagonia; different species of oaks 
(Quercus robur L., Q. ilex L.) inoculated with Tuber melanosporum and T. aestivum 
Vittad. in less proportion have been established in suitable microsites along the 
region (Fig. 12.1d). Nevertheless, as it would imply the introduction of an exotic 
taxa to native forest lands, further studies are required to evaluate its behavior and 
productivity.
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12.7  Conclusion

Forest fires and changing climatic conditions determined by the accelerated effects 
of Climate Change, along with the movement and introduction of plants, fungi, and 
other associated microorganisms determine new, challenging scenarios that include 
plant diseases and invasion, with their associated phenomena such as maladaptation 
and biodiversity loss. Sustainably managed forests serve as C storages, requires 
efforts to develop mycorrhizal technologies that could ensure the bioprotective role 
of this symbiosis. The role of mycorrhizas’ increasing plant tolerance to biotic and 
abiotic stresses can help decrease plant extinction risks and provide time for plant 
dispersal and adaptation. In this scenario, the autecology and biodiversity of mycor-
rhizas in Patagonian forests need further and urgent studies, not only considering 
recently reported declines of the relictual Araucaria araucana and the endemic 
N. dombeyi but also in light of new future outbreaks that could affect other species. 
Restoration efforts that will be growing in perspective of Climate Change will 
demand the inoculation of selected, well-suited seedlings, in order to permit seed-
ling survival in degraded areas, which are exposed to drastic environmental 
situations.
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13.1  Introduction

13.1.1  Northwest Patagonian Region

Patagonia is a geographical region that encompasses the southern end of South 
America, from 39 °S to 55 °S.  It is characterized by longitudinal and latitudinal 
precipitation gradients (Paruelo et al. 1998). Annual precipitation decreases from 
about 4000 mm at the west in the north, to 100 mm at the east in the south of the 
hemisphere, imposing different soil and vegetation patterns and notably affecting 
ecosystem composition and functions (Cabrera 1976; Soriano et al. 1983). In north-
west Patagonia, Argentina, there are two main geomorphological subregions: 
Andean and Extra-Andean. The first one occupies a narrow north-south strip of land 
of 63,000 km2 along the slopes of the Andes and includes High-Andean ecosystems 
as well as temperate Andean forests. The Extra-Andean subregions are character-
ized by irregular plateaus, low hills, and riverine depressions and include steppes 
and meadows. Patagonia is considered a hotspot region of biological diversity; in 
this context, mycorrhizal fungi and other soil- or plant-associated microorganisms 
are not exceptions (Nouhra et al. 2012; Fernández et al. 2015; Bruzone et al. 2016; 
Duo Saito et  al. 2018; Carron et  al. 2020; Mestre et  al. 2011, 2014; Mestre and 
Fontenla 2021). Major advances have been made in the last decades regarding the 
behavior, distribution, and function of the mycorrhizal symbioses in addition to soil 
microorganisms in Patagonia. Each of these contributions was focused on different 
subregions, ecosystems, or environments and included different taxonomical or 
ecological aspects of diverse microbial groups (e.g., fungi, bacteria). A broader 
view of these achievements was missing so far. This chapter summarizes the current 
knowledge on mycorrhizal associations in High-Andean ecosystems, Andean for-
ests, steppes, and meadows of northwestern Patagonia. In addition to published 
information, here, we include important data (presented in-depth) from less acces-
sible reports, such as theses and presentations in scientific meetings; mainly, 
regional bibliographies were cited with the same objective. The relationships 
between mycorrhizal behavior and altitudinal-precipitation gradients were high-
lighted in this report.

13.1.2  Microorganisms Associated with Plant-Soil Systems

Mycorrhiza play important roles in biological communities and are the key sources 
of energy for many fungi. They benefit plants by enhancing nutrient uptake, induc-
ing resistance to stressful conditions, and may become essential in nutrient-deficient 
habitats (Gardes and Dahlberg 1996; Read 1999). Mycorrhiza favor inter- and intra-
specific nutrient transfer among plants, through a strongly interconnected common 
mycorrhizal network (Chen et al. 2018). There are four main types of mycorrhiza: 
arbuscular mycorrhiza (AM), ectomycorrhiza (EcM), ericoid mycorrhiza (ErM), 
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and orchid mycorrhiza (OrM). The EcM and AM symbioses are the most abundant 
and frequent types, while ErM and OrM are less frequent. AM is the most broadly 
distributed type of mycorrhiza and is formed by all kinds of plants (herbs, shrubs, 
trees, pteridophytes, and mosses). EcM normally colonize woody plants and are 
broadly important in forests worldwide. ErM are limited to some members of 
Ericaceae and Diapensiaceae, whereas OrM are associated to one of the most diver-
sified plant families, Orchidaceae. Non-host (NH = non-mycorrhizal) plants have 
secondarily lost their mycorrhiza-forming capacity permanently, or intermittently 
(= facultative mycorrhiza), depending on the environmental context (e.g., type of 
habitat, co-occurring plants, soil fertility, or pollution). Many NH plants are habitat 
specialists, growing under particular soil or climatic conditions and disturbed sites, 
or nutritional plant specialists, such as carnivores, parasites, and cluster-rooted spe-
cies. The mycorrhizal type or the capacity to form mycorrhiza is usually uniform for 
each plant genera or family. Nevertheless, some plants exhibit variable levels of 
mycorrhizal colonization or even behave as facultative or NH species in different 
environmental conditions. Other plant species have mixed or dual infections, or 
change their main mycorrhizal type during their life cycle or depending on different 
environmental conditions. See these general mycorrhizal knowledge in Brundrett 
and Tedersoo (2018), Tedersoo et al. (2020), and bibliography cited within them. 
The interaction of host and NH plants is also important as it has been observed that 
the latter produce substances that may inhibit AM colonization of host plants. This 
inhibitory effect, which depends on plant species, age, and size of NH and host 
plants, decreases the AM infectivity of soils possibly by acting on soil fungal struc-
tures. The inhibitory effect of NH plants is of fungistatic, transient, reversible, and 
nonsystemic nature and depends on volatile substances produced by their roots 
(Fontenla et al. 1999).

In addition to mycorrhizal fungi, other biotrophic microorganisms, including 
endophytic fungi and bacteria, often colonize the roots (Chaia et al. 2006; Bruzone 
et al. 2016; Gentile 2016; Arancibia et al. 2018; Bella 2019; Carron 2021). These 
plant-microorganism interactions can result in beneficial symbioses, seemingly 
neutral endophytic cohabitation, and also in harmful relationships (Spanu and 
Panstruga 2017). For example, dark septate endophytes (DSE) conform a heteroge-
neous and widely distributed group of fungi, which can be found in plant roots 
(Diehl and Fontenla 2010; Fernández et  al. 2008, 2010; Salgado Salomon et  al. 
2013; Bruzone 2009, especially common in polar and alpine habitats (Fernando and 
Currah 1996; Lugo et al. 2003, 2008; Newsham 2011; Urcelay et al. 2011). Some 
evidence suggested mutualistic associations between DSE and plants, but neutral or 
even negative effects have also been reported (Mandyam and Jumpponen 
2005; Jumpponen 2001; Newsham 2011). Mycorrhizal fungi might co-occur with 
DSE and with N2-fixing microorganisms such as the actinobacteria Frankia in 
Patagonia (Chaia et al. 2006, see also Rhamnaceae records in Table 13.1). All these 
topics will be addressed in the following text, with especial emphasis on the infor-
mation available for northwest Patagonia.
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Table 13.1 Intraradical fungi of High-Andean plants and comparisons with other subregions of 
northwest Patagonia

Plant taxonomy
Plant
habita

Occurrence and 
colonization of of 
High-Andean plants

Mycorrhizal occurrence of Andean forest 
and Extra-Andean steppe plantsb

Families and 
species Typec AM %d DSEe Ecosystem Family Genera Species

Apiaceae Steppe AM
Azorella andina PH AM 91 +
Pozoa volcanica PH AM 69 +
Asclepiadaceae Forest AM
Diplolepis 
nummulariifolia

PH AM 65; 60f ++ Forest

Asteraceae Forest and 
steppe

AM+NH

Baccharis 
magellanica

SH AM 65; 79 +++ Forest and 
Steppe

AM

Chaetanthera 
villosa

PH NH 0 +

Chiliotrichum 
diffusum

PH AM 59; 61 ND

Erigeron andicola PH AM 98 +++
Erigeron 
leptopetalus

PH AM 96 +++

Nassauvia 
pulcherrima

PH NH 0 + Steppe AM+NH

Nassauvia pygmaea PH NH 0 +++
Nassauvia revoluta SH NH 0 ++ Steppe
Senecio crithmoides SH AM 30; 61 +++ Forest and 

steppe
AM

Senecio hieracium PH AM 86 +++
Senecio peteroanus SH AM 14; 44 ++
Senecio 
portalesianus

SH AM 9 ++++

Berberidaceae Forest and 
steppe

AM+NH

Berberis 
empetrifolia

SH AM 49; 59 +++ Forest and 
steppe

AM+NH

Brassicaceae Steppe NH
Cardamine sp. PH NH 0 ++
Onuris graminifolia PH NH 0 +
Calceolariaceae Forest and 

steppe
AM

Calceolaria biflora PH AM 67 ++ Forest and 
steppe

AM AM

Calyceraceae Steppe AM+NH

(continued)
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Table 13.1 (continued)

Plant taxonomy
Plant
habita

Occurrence and 
colonization of of 
High-Andean plants

Mycorrhizal occurrence of Andean forest 
and Extra-Andean steppe plantsb

Families and 
species Typec AM %d DSEe Ecosystem Family Genera Species

Gamocarpha 
selliana

PH AM 92 +++

Moschopsis 
caleofuensis

PH AM 79 +++

Caryophyllaceae Steppe NH
Cerastium arvense PH NH 0 ++,+++ Steppe NH NH
Colobanthus 
lycopodioides

SH NH 0 +

Empetraceae Forest and 
steppe

ErM+AM

Empetrum rubrum SH ErM ND ND Forest ErM ErM
Ericaceae ND ND Forest and 

steppe
ErM

Gaultheria pumila SH ErM ND P Steppe ErM
Gaultheria 
caespitosa

SH ErM ND P

Loasaceae Steppe AM
Pinnasa nana PH NH 0 +++
Oxalidaceae Forest AM
Oxalis adenophylla PH AM 52; 66 + Forest AM
Oxalis erythrorhiza SH AM 47 +
Plumbaginaceae Steppe AM
Armeria maritima PH AM 10;12,50 +++ Steppe AM AM
Poaceae Forest and 

stepee
AM+NH

Poa obvallata PH AM 25 +++ Forest and 
steppe

AM+NH

Koeleria barbinodis PH AM 41 +++
Ranunculaceae Steppe AM
Anemone multifida PH AM 93 ++ Steppe AM AM
Callianthemoides 
semiverticillata

PH AM 70 ++

Rhamnaceaeg Forest and 
steppe

AM

Ochetophila nana SH AM 78 ++ Forest and 
steppe

AM

Rosaceae Forest and 
steppe

AM

(continued)
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Table 13.1 (continued)

Plant taxonomy
Plant
habita

Occurrence and 
colonization of of 
High-Andean plants

Mycorrhizal occurrence of Andean forest 
and Extra-Andean steppe plantsb

Families and 
species Typec AM %d DSEe Ecosystem Family Genera Species

Acaena 
macrocephala

PH AM 61 + Forest and 
steppe

AM

Acaena pinnatifida PH AM 98 + Forest and 
steppe

AM

Rubiaceae Forest and 
steppe

AM

Galium 
richardianum

PH AM 68 + Steppe AM AM

Oreopolus glacialis PH AM 65,73 ++ Steppe AM AM
Schoepfiaceae
Quinchamalium 
chilense

PH AM 1,2 ND

Valerianaceae Forest and 
steppe

AM

Valeriana carnosa PH NH 0 +++ Forest and 
steppe

AM AM

Valeriana 
macrorhiza

PH AM 80 +++

Violaceae Forest and 
steppe

AM

Viola columnaris PH AM 77 +++ Forest and 
steppe

AM

Viola maculata PH AM 67;79; 92 +++ Forest and 
steppe

AM

Viola sacculus PH AM 9 +

References:
aHabits: PH perennial herbs, SH subshrubs
bBibliography information about mycorrhizal symbioses in forest and Patagonian steppe at differ-
ent taxonomic plant levels (Fontenla et al. 1998; Fontenla 2000)
cType: mycorrhizal types, AM arbuscular mycorrhiza, ErM ericoid mycorrhiza, NH non-host/non- 
mycorrhizal plants. AM % percentage of AM colonization
dAM %: Percentage of arbuscular mycorrhizal colonization
eDSE dark septate endophytes; occurrence in a range: + = 1–25%, ++ = 26–50%, +++ = 51–75%, 
++++ = 76–100%; P presence of ErM. ND not determined. Empty cells are due to lacking data
fData from different sampling sites
gRhamnaceae: Plants with AM and Frankia symbiosis. Fontenla, Fernández, Ezcurra pers.com. 
(2007); Bruzone (2009)
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13.2  High-Andean Ecosystems: Andean Subregion

13.2.1  Mycorrhiza and DSE Status

High-mountain ecosystems impose unfavorable conditions for plant establishment 
and development. AM have been reported to be more common in ecosystems 
located at low altitudes than in European Alpine ecosystems, where the abundance 
of AM plant species and AM colonization tend to decrease, often in favor of DSE or 
NH plants (Read and Haselwandter 1981; Dhillion 1994; Körner 1999; Ruotsalainen 
et  al. 2004). Some studies conducted in high-mountain environments along the 
Andes arrived at similar results (Lugo et al. 2008; Schmidt et al. 2008; Urcelay et al. 
2011). However, this is not the case for all high-mountain environments, since the 
prevalence of AM has been also recorded in elsewhere in the Andes, and South Alps 
of Japan (Kagawa et al. 2006; Silvani et al. 2017). In Patagonia, High-Andean eco-
systems occupy extensive areas above the forests, and their altitudinal range 
decreases from north to south (2000–500 m a.s.l.). They are characterized by low 
temperatures, snow accumulation, low relative humidity, high radiation levels, 
strong winds, and low partial pressures of oxygen (Ferreyra et al. 1998, 2006). The 
relief of Patagonian High-Andean ecosystems includes both gentle and steep slopes 
and rocky or sandy soils, which are usually loose and unstable. These scree environ-
ments also include islands of High-Andean wetlands and steppes. Patagonian High- 
Andean ecosystems harbor more than 300 plant species (Ferreyra et al. 1998), and 
the mycorrhizal status of many of them was evaluated by Fontenla, Fernández, and 
Ezcurra within the Nahuel Huapi National Park (pers.com.). This study was carried 
out in Mt. Catedral and Mt. Challhuaco, which have different precipitation regimes 
(1500–1000 mm annually), and included several High-Andean environments such 
as screes, steppes, and meadows. In total, 46 plant species and 21 families were 
studied, and it was observed that AM plant species prevailed (70%) over NH (24%) 
and ErM (6%) plant species. Mixed mycorrhizal colonization or other mycorrhizal 
types were not registered, and colonization values varied widely between different 
plant species (15–96%, Table 13.1). These results contrast with those previously 
mentioned for other high-mountain ecosystems of the world, where AM are not so 
frequent and NH prevails. It is possible that the interaction between altitude and lati-
tude affects the relevance of the AM symbioses in these High-Andean ecosystems, 
but more studies are needed to validate this idea.

Most of the families studied in these Patagonian High-Andean ecosystems 
included species with the same mycorrhizal type (64% of AM families). Although 
the Calyceraceae and Poaceae species analyzed for these ecosystems had AM, both 
mycorrhizal or NH species were observed for these families in other Patagonian 
areas (Table  13.1). The Asteraceae, Berberidaceae, and Valerianaceae families 
(13%) included both AM or NH species, as observed in previous studies for 
Patagonia. Pinnasa nana is a NH species belonging to the Loasaceae family; these 
family also presented AM species in other Patagonian regions. NH species were 
found in 9% of the families, some of which are considered typical non-mycorrhizal 
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families (Brassicaceae and Caryophyllaceae). The Empetraceae and Ericaceae fam-
ilies had ErM, in accordance with previous works. Interestingly, all plant species 
were also colonized by DSE (Table 13.1), thus demonstrating that the co-occurrence 
of both fungal types is more the rule than an exception in High-Andean ecosystems.

13.2.2  Mycorrhiza in Plant Species Growing in High-Andean 
Environments and in the Patagonian Steppe: Andean 
and Extra-Andean Subregions

High-Andean ecosystems significantly differ from the Patagonian steppe, mainly in 
terms of snowfalls and rainfalls. However, these distinctive subregions also have 
some environmental features in common, such as low water availability, high radia-
tion, and wind. Mycorrhizal and DSE colonization, in addition to the occurrence of 
AM fungi (AMF) spores in soils, was studied for High-Andean to steppe environ-
ments (Bruzone 2009; Fontenla and Fernández pers.com.; Velázquez et al. 2016). 
Four environments around 2006 to 830 m a.s.l. were selected from west to east, 
following a decreasing precipitation (mm annually) gradient: Mt. Tronador (3500), 
Mt. Catedral (1550), and Mt. Challhuaco (1000) in the High-Andean ecosystems 
and the Extra-Andean steppe (830 annual mm). Armeria maritima, Baccharis mag-
ellanica, and Quinchamalium chilense were sampled in these four environments. 
Another six plant species were not found all along the gradient so that they were 
sampled in three sites, according to the following two groups: (a) Western sites 
(High-Andean environments): Nassauvia revoluta, Senecio crithmoides, and 
Chiliotrichum diffusum; (b) Eastern sites (Mt. Catedral, Mt. Challhuaco, and 
Patagonian steppe): Berberis empetrifolia, Oreopolus glacialis, and Viola macu-
lata. As observed in previous studies (see Sect. 13.2.1 and Table 13.1), the majority 
of the analyzed specimens (85%) had AM; Nassauvia revoluta was the only non- 
mycorrhizal species. When considering together the nine AM species, similar levels 
of AM colonization were observed for all species and environments (Fig. 13.1a). 
However, in the case of the species that were present in the four sampling sites, a 
significant difference between Mt. Tronador and the Patagonian steppe was noticed 
(Fig. 13.1b). Armeria maritima and Q. chilense presented a facultative AM behavior 
with values ranging between 0–65% and 0–39%, respectively. For both species, AM 
colonization tended to increase from High-Andean environments (including NH 
specimens and the lower colonization values) to the Extra-Andean steppe (where 
the highest colonization values were registered). In contrast, the opposite tendency 
was registered for O. glacialis; its colonization values ranged from 3% in the steppe 
to 88% in high-mountain ecosystems.

The comparison of the symbiotic behavior between High-Andean and Patagonian 
Steppe environments indicates that the percentage of colonization might vary sig-
nificantly between extremes of the environmental gradient. In addition, non- 
mycorrhizal specimens were more frequent in High-Andean environments than in 
the Patagonian Steppe.
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Fig. 13.1 Mycorrhizal colonization of the plant species studied along an altitudinal and precipita-
tion gradient including three High-Andean ecosystems and a Patagonian steppe: (a) All species in 
each sampling site were considered (nine spp.; six of them were found in three out of the four 
sampling sites); (b) only the species present simultaneously in all sampling sites were considered 
(A. maritima, B. magellanica, and Q. chilense). Data from Bruzzone (2009). Different letters in 
each graphic indicate statistically significant differences

DSE were present in all plant species and in most of the individuals (83%) that 
were analyzed. In general, AM colonization was more frequent, in terms of number 
of individuals, than DSE and more frequent in shrubs than in herbs. Interestingly, 
AM and DSE colonization was positively correlated, which contradicts what has 
been described for high-mountain ecosystems in other parts of the world, such as 
those mentioned before. According to these results, both types of intraradical fungi 
widely co-occur in the root systems of most of the plant species studied in High- 
Andean and Steppe ecosystems, supporting the idea that they play a strategic role 
for plants inhabiting Patagonian ecosystems.

Several studies on high-mountain ecosystems have reported the diversity of soil 
AMF species (Lugo et  al. 2008; Velázquez et  al. 2008; Palenzuela et  al. 2014). 
Bruzone (2009) and Velázquez et  al. (2016) provided the first records of AMF 
spores richness and diversity in Patagonian High-Andean ecosystems. A total of six 
families and 27 species of the Glomeromycota phylum were identified in the same 
environments and sampled plants cited above (Mt. Tronador, Mt. Catedral, Mt. 
Challhuaco, and Steppe). Acaulosporaceae was the dominant family in contrast to 
other high-mountain environments, which were dominated by Glomeraceae (Gai 
et al. 2009; Carvalho et al. 2012). Acaulospora and its species (12) represented the 
most abundant taxa, with a broad distribution in all four environments. Acaulospora 
delicata, A. dilate, A. laevis, and A. scrobiculata were the most abundant species. 
Glomeraceae (with the exception of Glomus sp.1), Gigasporaceae, and Pacisporaceae 
were represented by species with rare or common abundance and variable distribu-
tion. The species of Claroideoglomeraceae and Ambisporaceae presented variable 
abundances; neither of them was absent in the Extra-Andean steppe. The total num-
ber of AMF soil spores in the sampled environments ranged from 27 to 92 spores/g 
and was different only between the two intermediate precipitation environments 
(Mt. Catedral and Mt. Challhuaco). AM spore’s richness was similar among all 
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environments and comparable to other high-mountain areas (Lugo et  al. 2008; 
Carvalho et al. 2012; Gai et al. 2009). Altitude and precipitation were not correlated 
either with the number of AMF spores or with species richness, suggesting that 
variations among AMF communities were mostly site dependent, whereas environ-
mental conditions determine AMF local diversity such as mentioned by Velázquez 
et al. (2008, 2010).

13.3  Patagonian Andean Forests: Andean Subregion

13.3.1  Mycorrhiza and Dominant Tree Species

Andean forests in Argentina extend over 2000 km latitudinal, with a maximum lon-
gitudinal width of approximately 100 km. In pure and mixed mesophilic forests, 
some of the major native tree species are EcM hosts: Nothofagus antarctica, N. pum-
ilio, N. dombeyi, N. obliqua, and N. nervosa (angiosperms). Seedlings and adults of 
all species of Nothofagus have only EcM (Flores et al. 1997; Diehl et al. 2003, 2008; 
Tedersoo et al. 2010; Fernández et al. 2013, 2015; Nouhra et al. 2013, 2019). Most 
of other tree species are AM hosts: Araucaria araucana and Austrocedrus chilensis 
(gymnosperms) and Schinus patagonica and Maytenus boaria (angiosperms). Only 
one tree species is NH: Lomatia hirsuta (angiosperm) (Fontenla et al. 1998, 2001; 
Diehl et al. 2003, 2008). In the wetter western forests of this Argentinian subregion 
(referred to as temperate rainforests in Argentina) and in Chile, the diversity of tree 
species is far higher and includes the following AM host species, among others: 
Lepidothamnus fonkii, Fitzroya cupressoides, Pilgerodendron uviferum, Podocarpus 
nubigenus, and Saxegothaea conspicua (gymnosperms) and Laurelia sempervirens, 
Dasyphyllum diacanthoides, Drimys winteri, and Luma apiculata (angiosperms). 
Gevuina avellana and Embothrium coccineum are NH species (Carrillo et al. 1992; 
Godoy et al. 1994; Fontenla pers.com.). In northwestern Patagonia, the only EcM 
host plants seem to be the native Nothofagaceae species and the exotic trees of 
Pinaceae, Salicaceae, and Eucalyptus. Unlike Nothofagus, these exotic species may 
also associate with AM, especially at early developmental stages. Adults of Populus 
and Salix trees may also present mixed AM-EcM colonization (Wang and Qiu 2006; 
Teste et  al. 2019). For example, in Patagonia, Populus (Salicaceae) adult trees 
showed EcM colonization (Mestre and Fontenla pers.com.), while one-year-old 
Populus rooting cuttings showed mainly AM colonization and the incipient pres-
ence of EcM (Mestre et al. 2017; Mestre and Fontenla per.com.). Salix humboldti-
ana (a native Salicaceae) also develops mixed AM-EcM colonization in the central 
area of Argentina (Becerra et al. 2009; Burni 2011; Lugo et al. 2012), but there are 
no records about its mycorrhizal behavior in Patagonia.

The maximum estimation of EcM plant distribution in the world includes 335 
genera and 8500 species; EcM plants constitute one of the main components of for-
est ecosystems in Boreal temperate and Mediterranean climate zones (Nouhra et al. 
2013; Brundrett and Tedersoo 2018). In temperate Andean forests, the EcM type is 
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far less common in terms of the number of genera and species involved (only five 
species of Nothofagus in NW Patagonia). Nonetheless, Argentinian Nothofagus 
spp. are ecological highly relevant due to the broad distribution of Nothofagus for-
ests in Andean forests. All dominant native conifers of Patagonia develop AM, in 
contrast to northern hemisphere conifers (Kernaghan and Harper 2001). In A. arau-
cana, two root morphology classes were observed (long-thin vs. short-globular 
roots), and both classes had similar AM colonization (Diehl and Fontenla 2010). It 
is interesting to mention the co-occurrence of DSE and mycorrhiza in roots of dif-
ferent Nothofagus species, A. chilensis, M. boaria, and L. hirsuta.

The relation between mycorrhizal colonization, soil fertility, and plant nutrient 
content was studied for ten native tree species in NW Patagonia (Diehl et al. 2003, 
2008). The EcM colonization of the five Nothofagus species ranged between 73% 
and 79%. In A. araucana, A. chilensis, F. cupressoides, and M. boaria, AM coloni-
zation ranged between 80% and 90%. Nothofagus pumilio and N. obliqua forests 
develop on the most fertile soils, whereas AM native conifers are more associated 
with the lower values of soil nutrient requirements and N/P ratio (Diehl et al. 2008). 
According to these studies, the lack of plant P limitation in these species is probably 
related to the prevalence of EcM and AM in plant roots. The only species apparently 
limited by P would be L. hirsuta, which has cluster roots and was the only NH spe-
cies included in these works (Diehl et al. 2003, 2008). To explore the vertical distri-
bution of mycorrhizal colonization up to 0.8 m in soil depth, another study was 
carried out on roots of the same tree species and locations mentioned above. The 
persistence of EcM or AM colonization and similar colonization values regardless 
of root depth were demonstrated. These results could be related to the functional 
importance of mycorrhizal colonization for water access (Fontenla and Diehl 
pers.com.).

13.3.2  Mycorrhiza and DSE of Understory Vegetation

Spermatophytes (Seed Plants). Most of the plants in Patagonian forest understories 
are low trees, shrubs, and herbs. Several studies in northern Patagonia surveyed the 
understory of forests dominated by A. chilensis (AM forest, 77 spp.), Nothofagus 
(EcM forest, 69 spp.), and L. hirsuta (NH forest, 20 spp.). In each of these environ-
ments, most of the species formed AM (79, 83, and 85%, respectively), or were NH 
species (11, 9, and 15%, respectively). Low values of ErM and OrM plant species 
(6 and 7%, respectively) were recorded under canopy trees of AM forests and EcM 
forests (Fontenla et al. 1998; Fontenla pers. com.). This means that, regardless of the 
mycorrhizal behavior of the dominant tree species, the understory of all forests had 
high abundance and distribution of AM plant species. Thus, EcM forests presented 
a mixed mycorrhizal state that possibly upgrades the benefits of both types of sym-
biosis. The relative importance of each mycorrhizal type, in terms of EcM-dominant 
tree versus AM understory; their influences on nutrient, water, and energy cycles, 
and the way they interact are unknown.
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Pteridophytes. These plants are common in the deeply shaded temperate forests 
of NW Patagonia, especially in the rainforests (Cabrera 1976). Several authors have 
registered the occurrence of AM in sporophytes and gametophytes of pteridophytes 
worldwide (Muthukumar and Udaiyan 2000). This symbiosis has been described 
also for some fossil pteridophytes, which means that it has persisted for more than 
400 million years. In Patagonia, the mycorrhizal status of several pteridophyte spe-
cies was first studied by Fernández et al. (2008, 2010). They analyzed ten families 
and 12 genera in a temperate rainforest: 50% of these families comprised only 
mycorrhizal species (Blechnaceae, Dryopteridaceae, Gleicheniaceae, Dicksoniaceae, 
and Pteridaceae), 20% included facultative mycorrhizal species (Equisetaceae and 
Lycopodiaceae), and 30% NH species (Aspleniaceae, Polypodiaceae, and 
Hymenophyllaceae). Arbuscular mycorrhiza were found in 48% of 21 species of 
pteridophytes considered in these studies. The mean colonization values per species 
ranged from 54 to 96%. The AM species percentage (48%) is lower than those 
recorded in other parts of the world (Muthukumar and Udaiyan 2000) and also 
lower than the percentage recorded for spermatophytes in Patagonian High-Andean 
and Andean forests (see Sects. 13.2 and 13.3). This may be related to the fact that 
52% of the sampled pteridophytes were mostly epiphytic or NH (11 species). An 
interesting observation concerning pteridophytes, in the rainforests studied here, is 
that quite often, AM fungi penetrated into root hairs and then spread along the root 
cortex. These root hair penetrations (common in Rhizobiales, a symbiont bacteria) 
were not frequently observed in Patagonian Angiosperms or Gymnosperms 
(Fontenla pers.com.). Dark septate endophytes were also recorded in the roots of all 
pteridophyte species that were analyzed, even in those that lacked AM, supporting 
the idea that DSE are very ubiquitous in plants of Patagonian forests and can co- 
occur with AMF (Fernández et al. 2008, 2010).

Bryophytes. The relationship between AMF and Anthocerotophyta has been 
studied previously, and it is known that mycorrhizal colonization may differ in 
occurrence and abundance depending on genera and environmental conditions. The 
first record of AM on anthocerophytes from Patagonia has been registered for 
Phaeoceros laevis and Nothoceros fuegiensis, which live in Nothofagus forests of 
five Patagonian provinces of Argentina (Cottet and Messuti 2000, 2017).

13.4  Ericoid Mycorrhiza and Related Root Endophytes 
Along the Andean Subregion: Study of High-Andean 
and Andean Forests and a Comparison Between Their 
Native Plant Species Versus Exotic Plant Species 
from Productive Farm

Ericoid mycorrhiza (ErM) is one of the least studied mycorrhizal types. In general 
terms, ErM have a low frequency in most ecosystems but a worldwide distribution 
(Wang and Qiu 2006). This symbiosis implicates a relatively low number of 
Ascomycota fungi, some uncultivable Sebacinales (Agaricomycetes, 
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Basidiomycota), and other no-sebacinoid Basidiomycota fungi (Vohník and 
Albrechtová 2011; Vohník et al. 2012, 2016 and references therein). Some of the 
main fungal species forming European ErM mycorrhiza are Rhizoscyphus ericae 
and Oidiodendron maius (Helotiales, Ascomycota) (Gorzelak et  al. 2012). 
Rhizoscyphus ericae, Meliniomyces spp., and Cadophora finlandica belong to the 
so-called R. ericae aggregate (REA) and have been recently grouped in the 
Hyaloscypha genera (Fehrer et al. 2019). The REA is a widespread group of root- 
associated fungi that may behave as saprobe root endophytes or ErM, or as EcM 
fungi (Fehrer et al. 2019), and in general could be isolated by cultivation. While 
R. ericae seems to be restricted to the ErM lifestyle, normally in Ericaceae plants; 
M. variabilis, M. bicolor, and C. finlandica form ErM with Ericaceae (Ohtaka and 
Narisawa 2008) but may also colonize roots of NH and EcM hosts and form fruit 
bodies (Piercey et al. 2002; Vohník et al. 2013). Most of the information on ErM 
fungi has been obtained by microscopy and culture-independent techniques (Selosse 
et al. 2007); information from fungal isolation and re-synthesis assays is quite lim-
ited. Until recently, ErM from the southern hemisphere had been mostly described 
in plants from Australia (McLean and Lawrie 1996; McLean et  al. 1999), New 
Zealand, and South Africa (Bizabani et  al. 2016). In Argentina, one of the first 
reports of ErM was published by Urcelay (2002), who studied the co-occurrence of 
ErM, AM, and DSE in Gaultheria poeppigii (Ericaceae, subfamily Vaccinoideae) 
from the central part of Argentina.

In Patagonia, the first studies of ErM were performed on blueberry culti-
vars,  located near native Patagonic Andean  forest  (Vaccinium spp., exotic in this 
region) and in four native Gaultheria species from native forests and High-Andean 
ecosystems (Bruzone 2009; Bruzone et al. 2015, 2016; Fontenla and Fernández per. 
com.). Eleven varieties of V. corymbosum and V. ashei from different farms located 
near Lago Puelo (Chubut province, Argentina) were investigated. These studies 
used different experimental approaches such as microscopic observation, ErM fungi 
and endophytic culture and isolation, and molecular identification. High and vari-
able ErM colonization was observed in all Gaultheria and Vaccinium species, 
regardless of host species/variety or sampling environment/site. Three different 
ErM colonization patterns of rhizodermal cells were microscopically observed: 
ErM fungi from REA aggregate, Sebaciales, and hyphal loops possessing clamp 
connections typical for basidiomycetes (not Sebacinales). DSE were also typically 
observed in all the analyzed species and varieties.

Cultural techniques resulted in the isolation of fungi from Vaccinium spp. 
cultivated in commercial farms (160) and from Gaultheria spp. growing in 
Andean forests (257) or in High-Andean environments (234). Regardless of gen-
era/species/environment, a prevalence of cultural Ascomycetes (more than 90%) 
over Basidiomycetes was observed. However, different compositions of fungal 
communities were detected between Vaccinium and Gaultheria species. In the 
case of Vaccinium spp., typical European ErM fungi (O. maius and Rhizoscyphus 
sp.) and other REA fungi (C. finlandia and M. cf. varibilis) were isolated, all of 
them included in the Ascomycota. Basidiomycota isolates corresponded to only 
2% of the total number of cultures, and they belonged to non-mycorrhizal 
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species. The ascomycetous DSE Leptodontidium orchidicola and Phialocephala 
cf. fortinii were also identified. In native Andean forests, typical European ErM-
forming fungi, such as Rhizoscyphus or Oidiodendron, were not identified in 
G. poeppigii and G. mucronata. In this case, the isolated ascomycetous fungi 
mainly corresponded to the Helotiales, with Phialocephala (possible DSE) as the 
most frequent genera, and the non-mycorrhizal fungi Pochonia and Tetracladium. 
To elucidate the apparent contradiction between the observed high ErM coloni-
zation and the low proportion of typical ErM fungi through cultivation, the 
amplification of total root DNA using specific ErM primers was performed. By 
this means, the presence of the fungi belonging to Sebacinaceae was confirmed 
in all samples, whereas REA were detected in very few samples (Bruzone et al. 
2015). When G. pumila and G. caespitosa from a High-Andean community were 
studied, 27% of the identified fungi belonged to Rhizoscyphus spp.; this was the 
first citation of these typical European ErM fungi in Patagonian environments 
and also in South America.

In summary, the ErM in Ericaceae plants from NW Patagonia present high inci-
dence of Rhizoscyphus spp. in High-Andean ecosystems and high incidence of 
O. maius and some REA in Vaccinium spp. Sebacinales, an ErM fungi difficult to 
cultivate, co-occurred in all plants of all ecosystems and were the principal in 
Gaultheria spp. in forests. According to microscopical analyses, there were several 
structures corresponding to no-sebacinoid Basidiomycota fungi, which could not be 
isolated. Consequently, these Basidiomycota fungi, possibly forming ErM, may had 
been underestimated. Further studies are necessary as they may be more relevant 
than expected for ericoid roots in our region. From all these results, the following 
question arises: are environmental conditions determining different symbiotic pat-
terns, or are they affecting only by the presence of REA fungi belonging to 
Hyaloscypha genera following a new classification (Fehrer et al. 2019).

13.5  Fungi Associated with Ectomycorrhizosphere

Soils are complex ecosystems in which several regions can be distinguished: bulk 
soil, generally referred to as the region further away from roots; rhizosphere, sur-
rounding roots and under the direct influence of root activity; and ectomycorrhizo-
sphere, which is under the direct influence of EcM symbioses. Each of these soil 
regions may harbor distinct microbial communities. The dominant EcM morphot-
ypes and associated ectomycorrhizospheric fungi were studied in four Patagonian 
N. antarctica and N. pumilio forests (Andean subregion) located in the Nahuel 
Huapi National Park (Mestre and Fontenla 2021). These last authors focused their 
work on the molecular identification of the mycobionts of each ectomorph type 
(root apices modified by the colonization of each EcM fungi);  and most of the 
sequences were assigned to EcM fungi within eight lineages: /aleurina, /amanita, /
cenococcum, /cortinarius, /descolea, /genea-humaria, /inocybe, and /tomentella- 
thelephora, which had previously been recorded in the region (Nouhra et al. 2013; 
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Fernández et  al. 2015). Less than 25% of the sequences corresponded to non- 
ectomycorrhizal lineages mainly reported as endophytic fungi. Within the Helotiales 
order (Ascomycota), the genera Leptodontideum and Phialocephala, and the spe-
cies Cadophora finlandia and Meliniomyces variabilis (Fehrer et  al. 2019) were 
identified. Leptodontideum and Phialocephala usually form DSE and were also 
identified in Gaultheria spp. roots (Bruzone 2017) and in soil samples from other 
Patagonian Nothofagus forests (Duo Saito et al. 2018; Carron et al. 2020). It has 
been described that C. finlandia and M. variabilis, also Helotiales of the RAE group, 
may form ErM in Ericaceae plants and EcM in European conifers (Vohník et al. 
2013). This raises the question of whether some of the Helotiales recorded in 
Andean forests of Patagonia could form EcM associations with Nothofagus trees 
and ErM with the understory shrubs (Gaultheria spp.), or if their presence in 
Nothofagus ectomycorrhizosphere corresponds to an endophytic or rhizospheric 
saprobiotic role.

13.6  Mycorrhiza and DSE in the Steppe: 
Extra-Andean Subregion

The Extra-Andean Steppe (Steppe sensu lato) of Patagonia is currently affected by 
desertification. It is ecologically described as a semiarid steppe with less than 500 
annual mm of precipitation. In northern Patagonia, this subregion includes the 
Patagonian steppe (steppe sensu stricto) and meadows. Meadows appear in undulat-
ing foothills and lowlands and are graminoid prairies dominated by Juncaceae, 
Cyperaceae, and Calyceraceae, where desertification processes normally reach low 
levels; they are characterized by temporary water excess, poor soil aeration, and the 
permanent accumulation of plant debris.

13.6.1  Mycorrhizal Status

Information regarding mycorrhizal behavior in plants from the Extra-Andean steppe 
is scarce. The mycorrhizal status of several plant species was studied in the Extra- 
Andean steppe by Fontenla et al. (2001). This study included 230 plant species from 
high- to low-shrub steppe ecosystems (sensu stricto) and meadows located at an 
altitude from 1300 to 900 m a.s.l., where mean annual precipitations vary between 
1000 mm and 267 (see references in Fontenla et al. 2001). One pteridophyte, two 
gymnosperms, and 155 angiosperms were identified and classified into 85 families. 
As found for the other Patagonian ecosystems, species that belong to the same fam-
ily had the same mycorrhizal type or were NH. Exceptions to this common behavior 
were found in species from the typical AM Asteraceae and NH Cyperaceae families. 
The mycorrhizal status of the Extra-Andean steppe subregion showed a 
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predominance of AM species (72%), resembling the temperate and semiarid grass-
land of North American, European, and Russian steppes (Fontenla et al. 2001 and 
references therein). All NH species in this subregion reached 28% of the total num-
ber of plant species and were less representative in the steppe sensu stricto (24%) 
than in the meadows (30%). Besides, it was observed that the Extra-Andean steppe 
had a low number of plant species usually forming ErM (0.6%) and the absence of 
EcM, OrM, and dual mycorrhizal colonization. Arbuscular mycorrhiza prevailed in 
the steppe (sensu stricto) among all plant species (76%, native and exotic), native 
species (62%), and among the most representative plant species (in terms of cover 
and abundance). In the meadows, AM were also prevalent in terms of number of 
species (70%), but not in terms of species abundance or dominance. The NH species 
Juncus balticus was, by far, the most abundant plant species in the meadows, both 
in cover and density; NH species of Caryophyllaceae, Cyperaceae, Brassicaceae, 
and Juncaceae were also relatively abundant in these environments. Despite the 
predominance of the AM status previously mentioned for meadows, the abundance 
and dominance of NH plants in the center of the meadows defined an important 
influence in these environments.

13.6.2  Mycorrhizal Behavior of Plants in Patagonian Steppe 
(Sensu Stricto) and Meadow Zones and Comparisons 
with Andean Forests

Fontenla (2000) and Fontenla et al. (2001) carried out a geographically extensive 
study, which included 14 sites with different environmental characteristics along a 
1300 mm precipitation range from the Extra-Andean steppe to the Andean forest 
subregion. In this study, meadows, high-shrub steppes, low-shrub steppes, ecotone 
environments, and Andean forests were considered. Meadows were categorized as 
“very good,” “good,” “regular,” and “poor” according to different ecological aspects 
defined by vegetation abundance and soil cover, physicochemical soil characteris-
tics, soil appearance in terms of water availability (very humid to very dry), and 
occurrence of desertification factors (see description in Table 13.2). In each meadow 
category, plant communities vary from the center, with higher water availability, 
toward the periphery, characterized by much drier conditions. This humidity gradi-
ent determined different ecological zones of the meadows: center, periphery, and 
border. All the studied environments were analyzed regarding plant species compo-
sition and their mycorrhizal category: mycorrhizal (M) and non- mycorrhizal/non-
host (NH), category of patches with very low or nil vegetation cover (WV), numbers 
of AM spores, and infecting propagules of AM in the soil. As mentioned in the 
preceding Sect. 13.6.1 most mycorrhizal plant species had AM. Thus, the mycor-
rhizal category was focused only in this mycorrhizal type (AM) and in NH species, 
and considered the abundance of the most representative species with each mycor-
rhizal behavior (AM and NH, see data from Sect. 13.6.1). The AM infective 
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Table 13.2 Characteristics of vegetation, soil, and mycorrhizal behavior of different environments 
of the Extra-Andean subregion and Andean forests

Environments/
zones # Vegetation and soil description Mycorrhizal behavior

Sites 
(precipitation) 
# Characterization

Dominant and abundant 
plants

Dominant
Categorya

AM IPb 
(MPN/ 
soil g)

AM 
spores
(N°/
soil g)

Meadowsc, d, e

Pilcaniyeu, 267 mm
1e-Very good 
meadow

Non-disturbed 
conditions

Center Graminoid prairie, 
flooded soil,
Ce#> 75

Juncaceae, Cyperaceae, 
Caryophyllaceae; low 
Azorella trifurcata

NH 1600 510

Periphery Tussock grass 
prairie, humid soil,
C: 25–50

Juncaceae, Cyperaceae, 
Festuca pallescens; low 
Poaceae

NH +M 350 324

Border Transition with 
steppe;
dry soil, C: 25–50

Festuca pallescens, 
Acaena magellanica, 
Senecio spp., Pappostipa 
sp.; very low Cyperaceae 
and Juncaceae

M 35 506

2-Good 
meadow

Some disturbed conditions

Center Graminoid-low 
shrubs prairie, humid 
soil, C > 75

Juncaceae, Cyperaceae; 
low Senecio neaei, S. 
bracteolatus

NH + M 900 323

Border Transition with 
steppe,
dry soil, C:25–50

Pappostipa spp., low 
Senecio spp., very low 
Juncaceae

M 30 183

3-Regular 
meadow

Moderately disturbed. Slight salinity

Center Graminoid prairie; 
flooded soil and 
moving water, 
C > 75

Juncaceae, Cyperaceae NH 1800 119

Border with 
steppe

Transition with 
steppe, dry soil,
C: 25–50

Festuca pallescens, 
Acaena magellanica, 
Senecio spp., Pappostipa 
spp., very low Cyperaceae 
and Juncaceae

M 150 298

4-Poor meadow Highly disturbed. Intensive salinity
Center Dry and crumbly 

soil, salt presence, C: 
1-5 scarce vegetation

Low abundance: Juncus 
balticus, Nitrophila 
australis, Arenaria sp.

WV 95 9

Periphery Tussock grass prairie 
with shrubs and 
herbs, dry soil, C: 
5–15

Senecio spp., Pappostipa 
spp., very low Cyperaceae

M 170 138

(continued)
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Table 13.2 (continued)

Environments/
zones # Vegetation and soil description Mycorrhizal behavior

Sites 
(precipitation) 
# Characterization

Dominant and abundant 
plants

Dominant
Categorya

AM IPb 
(MPN/ 
soil g)

AM 
spores
(N°/
soil g)

Border with 
steppe

Transition with 
steppe, dry soil,
C: 25–50.

Senecio spp., Pappostipa 
spp.

M 17 149

Low-shrub steppe

Pilcaniyeu,
276 mm

Plateaus and low 
hills (wind 
deflation); dry 
conditions, herbs and 
shrub, dry soil, C: 
25–50

Azorella prolifera, Poa 
ligularis, Pappostipa 
speciosa var. speciosa, 
[Festuca argentina]

M 175 55

High-shrub steppe

Bariloche 
district, near 
airport
700 mm

plateaus and low 
hills, with shrub and 
herbs, dry soil, C: 
50–75

Anarthrophyllum rigidum, 
Berberis microphylla, 
Discaria articulata, 
Azorella prolifera, Poa 
ligularis, Pappostipa 
speciosa

M 900 437

Ecotone between steppe and forest

Pampa de 
Huenuleo
1000 mm

Low hills with 
shrubs and herbs, 
some disperse trees, 
C: 50–75

Discaria articulata, Poa 
ligularis, Pappostipa spp., 
Maytenus chubutensis, 
Azorella prolifera, 
Senecio bracteolatus, 
Acaena splendens, [A. 
chilensis]

M 700 456

Andean forest

Llao-Llao 
county forest, 
1600 mm

Hill with tree, shrub, 
and herbaceous 
strata; C: >75

A. chilensis, N. dombeyi, 
Lomatia hirsuta, Schinus 
patagonica

M 350 19

References:
aDominant mycorrhizal category of each environment following dominant and abundant plant spe-
cies: M mycorrhizal, NH non-host/non-mycorrhizal; WV very sparse or nill vegetation
bAM IP: AM infective propagules
cMeadow categories (very good, good, regular, and poor meadow) and ecological zones into each 
one (center, periphery and border)
dSoil parameters: OM organic matter (%)
eC: soil coverture (%)
fChemical soil characteristic of: Meadows range from center to border: very good: pH  =  8-8, 
OM = 8-3, CIC = 14-8, [Na + K] = 5-4; Good: pH = 9-7, OM = 2-1, CIC = 9-8, [Na + K] = 7-1; 
Regular: pH  =  10-8, OM  =  3-1, CIC  =  11-5, [Na  +  K]  =  19-2; Poor: pH  =  10-8, OM  =  2-1, 
CIC = 14-5, [Na + K] = 29-1. Low-shrub steppe: pH = 6, OM = 1, CIC = 8, [Na + K] = 1; high- 
shrub steppe: pH = 7, OM = 2, CIC = 9, [Na + K] = 1; ecotone steppe forest: pH = 6, OM = 1, 
CIC = 13, [Na + K] = <1; Andean forest: pH = 5.6, OM = 0.7, CIC = 33, [Na + K] = <1
#See bibliography in Fontenla (2000) and Fontenla et al. (2001) for precipitation, cover and other 
descriptions of the environments
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propagules (IP) were evaluated by an experimental assay of most probable number 
(MPN) by means of a modified method using trap host plants and soil from each of 
the 14 sites as a source of inoculum to analyze the potential AM infective capacity 
(Fontenla 2000; Fontenla et al. 2001). The NMP measure this natural AM infective 
capacity that was conferred by spores, hyphae from soil, and from host-colonized 
roots. Soil humidity was categorized as flooded, humid, or dry; soil features included 
moderate and intensive salinity; vegetation cover varied from less than 5% to more 
than 75%. Meadow peripheries and borders and the surrounding low-shrub steppe 
had a similar and low plant cover (25–50%). Intermediate plant covers (50–75%) 
were observed in a high-shrub steppe and ecotone between the steppe and the forest, 
and the highest cover (75–100%) was observed in the centers of non-disturbed 
meadows and in Andean forest. Little disturbed or non- disturbed meadow centers 
were in general dominated principally by J. balticus and other NH Juncaceae and 
Cyperaceae species. Other NH species and AM plant species were followed depend-
ing on their ecological conditions. In meadows with severe desertification condi-
tions, plants were absent or very scarce (WV). Plants in the peripheries of all 
meadows were either NH+M or only M.  All meadow borders, the surrounding 
steppe, and the forest presented the M category because they were dominated by 
AM species (Table 13.2). In summary, environmental characteristics together with 
desertification factors influence the Patagonian mycorrhizal behavior.

In general, the mycorrhizal category (M) prevailed in most communities 
(Table 13.2), with the exception of meadows’ centers. The numbers of spores and 
infective propagules of AM, in general, decreased from the center of the meadows 
to the dry low-shrub steppe and the Andean forest. Soil inocula in this study pre-
sented predominantly AM structures, which varied with environmental characteris-
tics; forests (characterized by high plant density, stratified vegetation, and higher 
precipitation) had high numbers of infective propagules but lower numbers of 
spores, suggesting the predominance of hyphae and infected root pieces in soil. 
Steppes and meadow borders (which have low plant density, low precipitation, and 
dry soil conditions) contained high numbers of spores and infective capacity (com-
parable between them, the spores and the infective capacity value) suggesting a 
prevalence of spores as infection propagules over hyphae strategies. It is possible to 
assume that borders of meadows, together with the steppes and forests, behave like 
AM inocula-generating communities. The center of meadows (non-disturbed) had 
the higher numbers of spores and infective capacity. The centers of almost all mead-
ows, in contrast, seem to be repository areas for AM inocula, independently of the 
abundance of NH plants, or the negative effect of non-host substances on AM soil 
inocula (as we mentioned in the introduction, Sect. 13.1.2).
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13.7  Conclusion

All around NW Patagonia, AM is the predominant mycorrhizal type in terms of 
number and abundance of spermatophyte species in most of the studied environ-
ments, with the exception of meadows’ centers. This predominance is higher than 
that found in pteridophytes, but studies on the latter group need to be diversified. In 
the case of Andean forests, in spite of the high predominance of AM (including 
understory species), the dominant tree species have principally two types of mycor-
rhiza. Nothofagus forests are the only native ecosystems of Patagonia that are domi-
nated by EcM trees, possibly upgrading the benefits of AM and EcM. Native conifer 
forests (in contrast with north hemisphere forests) associate with AM, which are 
present not only in the dominant trees but also in most of the understory vegetation. 
In general, NH species are in low proportions in terms of number and abundance of 
species. Pteridophytes seem to be disproportionately represented among NH spe-
cies, maybe due to the high proportion of epiphytic ferns. The occurrence of other 
types of mycorrhiza is low or nil, and dual mycorrhizal infection is not observed in 
native species along the study area. DSE are represented in a high proportion of all 
plant species of NW Patagonia, co-occurring with mycorrhizal or NH species, 
including High-Andean plants.

At ecosystem level, mycorrhizal symbioses were more frequent in Andean for-
ests than in the Extra-Andean steppe and in High-Andean environments, which are 
comparable in this regard. At environmental level, the mycorrhizal status varies 
following this tendency: EcM-forest > AM-forest > NH-forest > Andean steppe 
(sensu stricto) > Andean meadows = High-Andean environment. The mycorrhizal 
status and the number of AM spores and AM infective propagules followed opposite 
tendencies.

Spore numbers and infective capacity decrease from the center of the meadows 
to the dry low-shrub steppe and the Andean mixed forest (A. chilensis and 
N. dombeyi). In NW Patagonian environments, the prevalence of certain types of 
AM structures in soil inocula depends on environmental characteristics such as 
main vegetation type, land geomorphology, and water availability. High infective 
capacities are provided principally by AM hyphae from soil and root pieces in the 
steppe and mainly by spores in the center of meadows. It is remarkable that the 
latter environments, where NH species abound, maintain high infective capacities 
through the accumulation of resistance structures.

Ericoid mycorrhiza was determined in shrub species belonging to a single genus, 
Gaultheria, which is distributed in High-Andean environments and EcM Nothofagus 
forests. The same type of mycorrhiza is associated with blueberries from a com-
mercial farm located into an Andean forest. The identified ErM fungi were variable 
between these environments; colonization by REA, Sebacinales, and other 
Basidiomycota ErM fungi was evidenced. The presence of Rhizoscyphus ericae is 
the first report in South America.

A significant number of endophytes were also found without a clear ecological 
role; the possibility that some species of fungi, such as Cadophora finlandia and 
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Meliniomyces variabilis, could be shared between ErM and EcM emerges as a 
possibility.

To conclude, this chapter summarizes current knowledge on mycorrhizal asso-
ciations in northwest Patagonia and proposes general assumptions and hypotheses. 
It is clear that there are diverse and complex factors that contribute to mycorrhizal 
relationships in this large area. Further studies need to be pursued in order to deepen 
the knowledge on these communities; this will ultimately lead to a better under-
standing of global diversity patterns and their determinants in view of the climate 
changes that are having worldwide effects.
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14.1  Introduction

In the southern cone of South America, Subantarctic Temperate Forests develop on 
both sides of the Andes Mountains, in Chile and Argentina. These ecosystems are 
the southernmost forests on Earth and have been relatively undisturbed by man, 
which makes them unique and extremely valuable for diverse research purposes 
(Marchelli et al. 2021). They cover a narrow but long latitudinal strip from 35° S 
(Maule River, Chile) to 55° S (in the Southern extreme of Chile and Argentina) and 
are considered a biogeographic island due to their geographic discontinuity from 
the other forests of South America. The climate of these forests is cold temperate, 
with an average temperature ranging from 9.5 °C in the North to 5.4 °C in the South. 
Precipitation depends primarily on the humidity of the Pacific Ocean and forms an 
abrupt decreasing gradient, fluctuating from more than 4000  mm in the West to 
700 mm in the East over less than 50 km (Armesto et al. 1995). Altitude gradients 
are also characteristic of this region, particularly at Northern latitudes where the 
Andes reach higher heights (Fig. 14.1a). Together with temperature and precipita-
tion, elevation gradients also impose strong adaptive challenges for plants because 
of the marked changes in environmental conditions over relatively short distances, 
such as low temperatures, frosts and snow, high radiation, shorter growing season, 
and changes in soil characteristics (Marchelli et al. 2021). Disturbances of different 
origins (natural and anthropogenic) and at different scales have also influenced, and 
still do, the structure and dynamics of Subantarctic Temperate Forests. Some of the 
main influencing factors are those of geological origin, being volcanic eruptions 
relatively frequent high-magnitude disturbances in this region (Fig. 14.1c, j). Fire is 
another disturbance severely affecting these forests and probably the most impor-
tant since the European colonization (González et  al. 2014). At present, a large 
proportion of these forests is under protection (e.g., National Parks, natural reserves), 
but this was not always the case, and some regions have a long history of unsustain-
able exploitation and use, mainly because of grazing, overexploitation, and the 
establishment of extensive plantations of fast-growing exotic species, such as pines. 
Therefore, these forests are characterized by a high heterogeneity imposed by prom-
inent environmental gradients, which influences species distribution and determines 
the occurrence of different forest formations (Marchelli et al. 2021, Fig. 14.1).

M. Soto-Mancilla · M. C. Mestre 
Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), 
ConsejoNacional de Investigaciones Científicas y Técnicas (CONICET),  
San Carlos De Bariloche, Argentina 

P. Marchelli 
Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, Instituto Nacional 
de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas), 
San Carlos de Bariloche, Argentina 

C. Marín 
Centro de Investigación e Innovación para el Cambio Climático, Universidad Santo Tomás, 
Valdivia, Chile

N. Fernández et al.



283

Fig. 14.1 Environmental gradient characteristic of the Subantarctic Temperate Forests in Southern 
South America (a) and some typical Nothofagus forests from Argentina (b–h) and Chile (j–k). (b) 
Yuco, Neuquén; (c) Paso Cardenal Samoré, Neuquén; (d) Puerto Blest, Río Negro; (e) El Foyel, 
Río Negro; (f) El Chaltén, Santa Cruz; (g) Calafate, Santa Cruz; (h) Ushuaia, Tierra del Fuego; (i) 
Laguna arcoiris, Conguillio; (j) Llaima volcano and (k) Curacautín, Araucanía region. Photo’s 
credits: Fernández N: (b–e, g); Knoblochová T: (f, h); and Cornejo P: (i–k)

Subantarctic Temperate Forests are mainly composed of monotypic or mixed 
stands of two or three dominant tree species, with an understory of bamboo and/or 
several accompanying shrubs and herbs. In the tree layer, there is a predominance of 
angiosperms, accompanied by some long-lived gymnosperms, like Austrocedrus 
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chilensis, Araucaria araucana, Fitzroya cupressoides, and Saxegothaea conspicua 
(Armesto et al. 1995; Marchelli et al. 2021). Among the angiosperms, Nothofagus 
is by far the dominant genus, conforming about 80% of these forests (Fig. 14.1). 
This genus has a disjoint distribution with more than 40 species worldwide, occur-
ring in New Zealand, Australia, New Guinea, New Caledonia, and South America 
(Gondwanan origin). In South America, ten species and three recognized hybrids 
can be found. Six of these species are present in both Argentina and Chile (N. alpina, 
N. antarctica, N. betuloides, N. dombeyi, N. obliqua, and N. pumilio) and the other 
four only in Chile (N. alessandri, N. glauca, N. macrocarpa, and N. nitida) 
(Marchelli et al. 2021). Independently of their geographic location, species in the 
Nothofagaceae form ectomycorrhizas (EcM) (Tedersoo et al. 2009; Nouhra et al. 
2013; Fernández et al. 2015; Truong et al. 2017; Barroetaveña et al. 2019; Godoy 
and Marín 2019). Due to the ecological and economical importance of the 
Nothofagus species and to their close and vital relationship with EcM, several stud-
ies have focused on describing their mycorrhizal associations (Nouhra et al. 2019), 
including diverse ecological aspects as well as the diversity and distribution of the 
associated ectomycorrhizal fungi (EcMF). In this chapter, we describe different 
approaches used for studying this symbiosis in Nothofagus from South America and 
the influence of different biotic and abiotic factors on it.

14.2  Mycorrhizas in Nursery-Cultivated Nothofagus

Anthropogenic activities have caused persistent and prominent losses of forest 
cover all over the world. Natural regeneration of forest trees is usually challenging 
due to the lack of available seeds and to the harsh conditions for germination and 
seedlings’ establishment (e.g., plant competition, unfavorable climatic and micro-
site circumstances, consumption by herbivores). Therefore, artificial reforestation 
using nursery-grown seedlings is usually required (Haase and Davis 2017). 
Moreover, estimations of future effects of global climate change suggest that the 
need for forest restoration will increase, as environmental conditions become 
harsher, and the incidence of megafires increases. In this context, the availability of 
good-quality nursery-cultivated seedlings will be of crucial importance for deliver-
ing effective and successful restoration programs (Haase and Davis 2017; Marchelli 
et al. 2021).

Forest nurseries comprise a set of facilities (greenhouses) and lands (nursery 
beds) used to produce seedlings under favorable conditions, until they are ready for 
planting in the field, either for commercial or restoration purposes. Seedlings are 
commonly produced using two main cultivation systems: (i) containerized seed-
lings (grown in different types of pots and substrates) and (ii) bare-root seedlings 
(grown in open-field soil beds) (Menkis et al. 2011). Nursery managers have known 
for a long time that nursery-cultivated seedlings should be colonized by mycorrhi-
zas to ensure adequate field survival and growth (Cordell et al. 1987; Rudawska and 
Leski 2021). Such is so that mycorrhizas should be taken into account as an integral 
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component of nursery production and considered when determining seedlings’ 
quality. Besides, inoculation with selected growth-promoting fungi is an energy- 
efficient and environment-friendly alternative to fertilization with inorganic prod-
ucts (Cordell et al. 1987; Domínguez-Núñez and Albanesi 2019). However, a good 
understanding of the cultivation system and of the mycorrhizal status of the pro-
duced forestry seedlings is needed to be able to use mycorrhizal fungi as biotechno-
logical tools (Cram and Dumroese 2012; Rudawska and Leski 2021).

Nursery cultivation is also a good way of obtaining novel information on diverse 
ecosystem processes, which complements what can be observed or described 
directly in the field. This is because this type of experimental approach, performed 
under controlled conditions, simplifies the complex influence of different environ-
mental factors and allows to focus on particular variables (e.g., warming, drought, 
nutrient availability) or attributes of the species under study (e.g., genetic and phe-
notypic plasticity, adaptive potential). The description of mycorrhizas in Nothofagus 
seedlings cultivated in forest nurseries as part of domestication programs will be 
presented in Sect. 14.2.1, while the employment of nursery trials for the study of 
plant traits and ecosystem processes will be addressed in Sect. 14.2.2.

14.2.1  Domestication of Nothofagus Species

Domestication of forest trees refers to the development of technologies for high- 
quality seedling production, for both productive and restoration purposes. Tree 
domestication is mostly based on the selection of appropriate gene pools and con-
siders other important aspects, such as the improvement of seedlings’ growth, out-
planting in the field, and plantation management (Pastorino 2021). The forestry 
industry in South America has been mainly focused on introduced fast-growing 
species, as those included in the Pinus, Pseudotsuga, Populus, and Salix genera 
(González et al. 2008; Pastorino 2021). However, in the last decades, much more 
attention has been paid to native forestry species, since there is a social and govern-
mental consensus on the importance of conserving and restoring natural ecosystems 
and on moving toward more sustainable forestry practices. Among the native spe-
cies of greatest interest to domesticate and cultivate are those comprised in the 
genus Nothofagus (Pastorino 2021).

There is a growing concern in finding alternative technologies to chemical inputs 
(pesticides and fertilizers) used for agriculture and forestry production. In South 
America, Argentina, Brazil, and Colombia are playing a leading role in using bio-
products (e.g., biofertilizers, biocontrol agents). However, most of their effort is 
focused on agriculture (Goulet 2021), being still necessary to develop more sustain-
able options for the forestry industry. Since the 1950s, mycorrhizal fungi have been 
frequently applied as biofertilizers in forestry production, as their effectiveness in 
seedlings’ field survival and growth was experimentally demonstrated (Cram and 
Dumroese 2012; Domínguez-Núñez and Albanesi 2019). Despite one of the aspects 
that should be included in Nothofagus domestication is the application and 
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management of EcM (Fernández et al. 2013), the occurrence of this symbiosis is 
generally overlooked. This is mostly due to the lack of information on the mycor-
rhizal status of seedlings during cultivation, the appropriate ways of inoculating 
EcMF, and on the evaluation of seedlings’ performance after being established in 
the field. In order to fill these knowledge gaps, some studies have been performed 
and are described below.

In a two-year experiment, Fernández et al. (2013) analyzed the abundance and 
diversity of mycorrhizas naturally established in N. alpina seedlings cultivated 
under the same conditions as those used for domestication programs (i.e., seed strat-
ification, containerized seedlings production, fertigation, lack of EcMF inocula-
tion). Seedlings were grown under two different techniques in the nursery of the 
Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Bariloche (Fig. 14.2): 
(1) two years in pots inside the greenhouse (containerized) or (2) the first year in the 
greenhouse followed by a second year in the nursery soil bed (containerized + bare- 
root). For each plant, EcM colonization percentage  in addition to richness and 
diversity of EcMF were determined. It was observed that seedlings naturally devel-
oped EcM between six and 12 months after germination, right after the rustification 
stage, when nutrient supply (mainly N and P) and irrigation frequency were signifi-
cantly reduced. Seedlings that continued for a second year in the greenhouse were 
significantly bigger (higher values of stem length, root diameter, and stem diameter) 
and had significantly higher EcM colonization (73%) than those transplanted to the 
nursery soil (65%), which were subjected to transplant stress and harsher environ-
mental conditions (e.g., radiation, frosts, wind). However, bare-root seedlings were 
colonized by a higher number of EcMF species (six) with respect to those that 
remained in the greenhouse (two). The most abundant EcMF in seedlings from both 
cultivation techniques were Tomentella ellisii (Basidiomycota, 54–71%) and a still 
unidentified fungus named Ascomicetos EcM sp.  1 (29–37%) (Fig.  14.2). Four 
EcMF species were only found in bare-root seedlings, two basidiomycetes 
(Hebeloma cavipes and Rickenella sp. 1) and two ascomycetes (Peziza sp. 1 and 
Peziza sp. 2). This is in agreement with other studies that also reported that mycor-
rhizal fungi adapted to greenhouse conditions often remain in the roots after trans-
plantation, but they are gradually replaced by soil-borne species better adapted to 
natural environmental conditions (Fernández et al. 2013; Rudawska and Leski 2021).

In a different forest nursery, which is also involved in Nothofagus domestication 
programs (INTA-EEA Trevelin) and uses the same cultivation protocols, 
Barroetaveña et al. (2009) evaluated how the inoculation of three native basidiomy-
cetous EcMF (Hallingea purpureus, Austropaxillus statuum, and Setchelliogaster 
fragilis) affected the mycorrhization and growth of three Nothofagus species. These 
EcMF species were selected based on the following criteria: (1) the presence of 
abundant fruiting bodies in native forests, (2) a high number of spores in the sporo-
carps, and (3) their occurrence in more than one Nothofagus species. Seedlings were 
inoculated using spores of the different selected EcMF. After one year in the green-
house, it was observed that EcM colonization was relatively low and differed sig-
nificantly between Nothofagus species (mean values: 14.5, 8.6, and 3.6% for 
N. pumilio, N. obliqua, and N. alpina, respectively). Only two EcMF were found in 
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Fig. 14.2 Cultivation of Nothofagus alpina seedlings in the greenhouse (a–f) and soil bed (g) of 
the INTA EEA Bariloche forest nursery, and most abundant ectomorphotypes observed in their 
roots and formed by Ascomicetos EcM sp. 1 (h, i) and Tomentella ellisii (h, j). Photo’s credit: 
Fernández N
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seedlings’ roots, and none of them corresponded to the inoculated species. The most 
abundant EcMF was Thelephora terrestris (Basidiomycota), while Cenococcum 
geophilum (Ascomycota) was registered in just a few root tips. Significant relation-
ships between growth parameters and inoculation treatments were not detected. 
These results are in agreement with the abovementioned study (Fernández et  al. 
2013), in which only two EcMF were described in containerized seedlings, being 
the basidiomycetous species much more abundant than the ascomycetous. The 
unsuccessful inoculation of native EcMF in Nothofagus seedlings was most proba-
bly a consequence of their intolerance to fertigation and cultivation conditions in the 
greenhouse and/or to their incapacity of outcompeting EcMF normally present in 
forest nurseries and better adapted to these conditions (Barroetaveña et al. 2009). 
This is supported by the fact that Valenzuela et al. (2008) succeeded in inoculating 
the native EcMF Descolea antarctica (Basidiomycota) in N. obliqua seedlings 
grown without any kind of fertilizer. It is known that most of the techniques applied 
for intensive seedling production typically suppress or delay mycorrhizal coloniza-
tion, particularly when high fertilization rates are used (Cram and Dumroese 2012; 
Fernández et al. 2013), so this information has to be considered for successful EcM 
inoculation during Nothofagus cultivation.

In a different study, Carron (2021) analyzed the EcM behavior of five Nothofagus 
species (N. alpina, N. antarctica, N. dombeyi, N. obliqua, and N. pumilio) cultivated 
in three different nurseries located in northern Patagonia, Argentina. These nurser-
ies used different seed provenances and cultivation conditions (e.g., substrate, pot 
type and size, irrigation frequency, fertigation regimes). All the analyzed specimens 
had EcM despite not being artificially inoculated, and a total of 16 ectomorphotypes 
were recorded. Colonization percentages, EcMF richness, and diversity varied 
widely between the different nurseries. The nursery which produced the seedlings 
with the highest colonization values (72%) also presented the highest EcM richness. 
It was also noticed that EcM abundance and richness differed significantly not only 
between different Nothofagus species but also between seed provenances. Therefore, 
this study highlights the importance of contemplating plant material (e.g., seed 
provenance) in addition to nursery production conditions (e.g., substrate, fertiga-
tion) for managing the establishment and development of EcM in Nothofagus seed-
lings. Later on, some of these seedlings were transplanted into a native N. antarctica 
shrubland, and after four growing seasons, EcM abundance and diversity were ana-
lyzed again. Colonization values of the transplanted plants did not vary significantly 
between the nurseries and the field, but, as previously found by Fernández et al. 
(2013), EcM richness and diversity were much higher in seedlings growing under 
natural conditions.

According to the abovementioned studies (Barroetaveña et al. 2009; Fernández 
et al. 2013; Carron 2021), Nothofagus seedlings are naturally colonized by EcMF 
during their production in forest nurseries. It is possible that the EcMF inoculum is 
already present in the cultivation substrate or in the irrigation water, that it is caused 
by windblown spores, or even that resistant propagules remain in the greenhouse 
from one season to the other (Barroetaveña et al. 2009; Cram and Dumroese 2012; 
Fernández et al. 2013). It is also evident that colonization and diversity values of the 
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EcMF depend on the cultivation technique, as has been described for other nursery- 
cultivated forestry species (El Karkouri et al. 2005; Menkis et al. 2011; Rudawska 
and Leski 2021). It is important to consider that naturally established EcMF, such as 
Th. terrestris, To. Ellisii, and Ce. Geophilum, which have been found in forest nurs-
eries worldwide, are often well adapted to intensive nursery systems (Cram and 
Dumroese 2012; Rudawska and Leski 2021) and might outcompete the inoculated 
species, probably not tolerant to these conditions. Since the effectiveness of artifi-
cial inoculation can vary greatly depending on the host plant, the inoculated fungi, 
and the environmental conditions in the nursery or planting sites, a careful selection 
and testing of particular mycorrhizal inoculants able to ensure a positive benefit-to- 
cost ratio is needed before operational use (Cram and Dumroese 2012). An alterna-
tive to artificial EcMF inoculation would be to manage the cultivation system in 
order to obtain better EcM development and higher seedlings’ quality, for example, 
by reducing the amount of applied fertilizers so that more EcM are naturally formed, 
perhaps obtaining slightly smaller seedlings but with better adaptability to field con-
ditions (Menkis et al. 2011; Cram and Dumroese 2012).

Altogether, this information emphasizes the importance of considering all the 
steps of the cultivation process to accurately manage the mycorrhizal symbiosis as 
an effective and sustainable way of producing high-quality Nothofagus seedlings. 
Although progress has been made in this regard for different Nothofagus species, 
more studies are urgently needed to identify beneficial EcMF species and favorable 
cultivation conditions to optimize the development of this symbiosis and seedlings’ 
quality.

14.2.2  Description of Plant Traits and Ecosystem Processes

Nursery trials are also useful not only for describing the association between spe-
cific EcMF and certain forestry species but also for describing the effect of diverse 
factors on mycorrhizal development and its influence on plants’ growth or survival. 
For example, morphological and anatomical description of the ectomorphotypes 
formed by Laccaria laccata (Basidiomycota) and Paxillus involutus (Basidiomycota) 
in N. dombeyi and N. alpina, respectively, was investigated in nursery-cultivated 
seedlings (Godoy and Palfner 1997). Alberdi et al. (2007) and Álvarez et al. (2009) 
carried out greenhouse experiments for evaluating the physiological response of 
N. dombeyi seedlings to inoculation with a specific native EcMF (D. antarctica) and 
a nonspecific cosmopolitan EcMF (Pisolithus tinctorius, Basidiomycota) under 
drought stress conditions. They concluded that the inoculation with these EcMF 
favored plant resistance to water deficit (Alberdi et  al. 2007), stimulated plant 
growth, and increased foliar N and P concentrations, especially under drought stress 
conditions (Álvarez et al. 2009). Based on these results, they strongly suggested 
including EcM in afforestation and ecological Nothofagus restoration programs in 
order to optimize their production, reestablishment, and sustainability (Álvarez 
et al. 2009). In later studies, the importance of using EcM inoculation for carrying 
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out restoration activities with Nothofagus seedlings was confirmed (Godoy and 
Marín 2019). It was observed that the inoculation of N. alpina, N. obliqua, and 
N. pumilio with Ps. tinctorius and/or L. laccata improved not only seedlings’ growth 
in the nursery (Marín et al. 2018; Godoy and Marín 2019) but also their establish-
ment and development in the field (Godoy and Marín 2019).

Due to the fertile volcanic soils and to the climatic similarities with the native 
range of different Pinus species (Bradford and Lauenroth 2006), large plantations 
with fast-growing exotic conifers have been successfully established in the 
Subantarctic Temperate Forest region. Despite being an important economic 
resource, the establishment of Pinus plantations has seriously impacted native eco-
systems, causing significant alterations in soils’ physical, chemical, and biological 
properties, with severe consequences on environmental processes and ecosystem 
services (Franzese and Raffaele 2017; Castro-Díez et  al. 2019; Fernández et  al. 
2020). Besides, some Pinus species can easily spread outside the plantations, there-
fore becoming successful invaders (Franzese et al. 2016). Biological invasions are a 
serious global threat. Although it has been demonstrated that belowground invaders 
can impact ecosystem processes and determine aboveground communities’ assem-
bly, the investigation of biological invasions has been mainly addressed from an 
aboveground perspective (Policelli et  al. 2020). Most of the EcMF identified in 
both, Nothofagus and Pinus, are basidiomycetes, but fungal communities in their 
roots are completely different. Members of the Cortinariaceae are the dominant 
EcMF taxa in Nothofagus (Nouhra et al. 2013; Fernández et al. 2015; Barroetaveña 
et al. 2019; Godoy and Marín 2019; Truong et al. 2019; Mestre and Fontenla 2021), 
but are not that frequent in Pinus. Among the most abundant EcMF in Pinus, espe-
cially in plantations, are Rhizopogon roseolus and Suillus luteus. These two EcMF 
species are native to the northern hemisphere and co-invaded with their hosts 
(Barroetaveña et al. 2007; Policelli et al. 2018). Therefore, the establishment of a 
Pinus plantation and their associated mutualists might significantly impact native 
fungal communities. In this context, Salgado Salomón et al. (2013) used a green-
house bioassay to assess the occurrence and abundance of EcM in seedlings of four 
Nothofagus species (N. alpina, N. antarctica, N. dombeyi, and N. obliqua) grown in 
soils from pure Nothofagus forests, from pure Ps. menziesii plantations, and from 
Nothofagus forests invaded by Ps. menziesii. They found that seedlings grown in 
soils from pure Nothofagus forests had higher EcM colonization rates (57.8%), but 
those cultivated in soils from the plantations or from the invaded forests were still 
able to form abundant EcM (44.6 and 42.5%, respectively). Similarly, Policelli et al. 
(2020) used cultivation approaches for evaluating the growth and EcM colonization 
of N. antarctica and Pi. contorta seedlings cultivated in soils from pine-invaded or 
non-invaded forests. They observed that both tree species grew equally well and had 
high colonization rates (>60%) in both types of soil. However, it is important to 
mention that  despite similar colonization values, the fungi forming EcM varied 
widely depending on the soil where each plant species was cultivated (e.g., in 
N. antarctica the most abundant EcMF found in seedlings cultivated in the soil from 
the invaded area -Sistotrema sp.- was not even present in those growing in the soil 
from the non-invaded area). Out of the 12 EcMF species registered in this work, 
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only one was common for both tree species when cultivated into the soil from pine- 
invaded area (Sistotrema sp., Basidiomycota). This study revealed that the soil from 
native forests where the invasive host is still absent is already preconditioned for 
invasion by the presence of compatible EcMF, so the presence of native below-
ground fungal mutualists is apparently not hindering the spread of the non-native 
species (Policelli et al. 2020).

The fact that Nothofagus species are able to form EcM in soils from Pinus plan-
tations has been registered in some other studies also using cultivation approaches. 
For example, Fioroni (2020) evaluated in a nursery experiment how plant growth 
and mycorrhization varied in N. obliqua and Pi. ponderosa seedlings depending on 
three different cultivation aspects: (1) soil origin: native Nothofagus forest vs Pi. 
ponderosa plantation, (2) cultivation type: monospecific (two N. obliqua or Pi. pon-
derosa seedlings in the same pot) vs mixed (one seedling of each plant species in the 
same pot), and (3) application (or not) of a commercial EcM inoculant (Ectovit, 
Symbiom®, Czech Republic). This inoculant is suitable for most coniferous and 
some deciduous trees, as those included in the Fagaceae, which are closely related 
to the Nothofagaceae. It was observed that both species grew better in the forest 
soil, most probably as a consequence of its higher nutrient content. When cultivated 
in the plantation soil, seedlings’ growth was higher in mixed cultures than in the 
monospecific ones, being this information promising for considering the establish-
ment of mixed plantations that could replace, at least in part, Pinaceae monocul-
tures. The application of the commercial EcM inoculant usually favored the 
development of Pi. ponderosa seedlings but negatively affected N. obliqua, mainly 
in mixed cultures. In contrast to what was observed by Policelli et al. (2020), Fioroni 
(2020) found for both plant species that EcM colonization was higher when culti-
vated in its soil of origin (native forest or plantation soil for N. obliqua and Pi. 
ponderosa, respectively). Communities of EcMF differed significantly not only 
between plant species but also for the same species cultivated in the different types 
of soil. The most abundant EcMF in N. obliqua roots grown in the forest soil were 
Ruhlandiella patagonica (Ascomycota) and Sordariomycetes sp. 1 (Ascomycota) 
for monospecific and mixed cultures, respectively, while in the plantation soil, it 
was To. ellisii. In the case of Pi. ponderosa, the most abundant EcMF in the seed-
lings cultivated in the native forest soil were Su. luteus, Wilcoxina mikolae 
(Ascomycota), and Meliniomyces bicolor (Ascomycota), but in the plantation soil, 
EcMF dominance varied widely between the different treatments. In summary, the 
three evaluated factors influenced EcM abundance and EcMF composition in both 
hosts. Other important findings in this study were that: (1) Ru. patagonica was first 
described as forming EcM in Nothofagus roots (it had been found only in soil sam-
ples, Kraisitudomsook et al. 2019; Nohura et al. 2019), and it improved N. obliqua 
seedlings’ growth; and (2) some EcMF were found simultaneously in roots of both 
forestry species when cultivated in the plantation soil (To. ellisii, Tuber sp. 1, and 
one species of Pyronemataceae), demonstrating that they can harbor common fun-
gal symbionts under specific environmental conditions (Fioroni 2020).

Fire is one of the most important recurring disturbances in Subantarctic Temperate 
Forests, and it might favor Pinus establishment and invasion (Franzese and Raffaele 
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2017). In a recent study, Soto-Mancilla (2022) carried out a greenhouse experiment 
for investigating how fire intensity and soil origin affect the growth and EcM colo-
nization of recently established N. antarctica and Pi. contorta specimens. Seedlings 
of both species were grown in two types of soil (native scrubland vs pine planta-
tion), which were subjected to experimental burning of different intensities 
(High = 900 °C, Low = 500 °C, and Control = no burning). In Pi. contorta, the aerial 
biomass of the seedlings growing in the plantation soil was almost double than in 
those cultivated in the forest soil, but no differences were observed with respect to 
fire intensity. On the contrary, the aerial biomass of N. antarctica seedlings was 
almost the same for both soil types but tended to increase in burned soils, especially 
with high intensity  burning. Regarding EcM, and unlike what was observed by 
Fioroni (2020), colonization values were always above 70% for both species. In 
N. antarctica, EcM colonization increased as the intensity of the fire also increased, 
while this trend was not observed for Pi. contorta. Interestingly, a positive correla-
tion between aerial biomass and EcM colonization was observed for the native spe-
cies, being this correlation negative for Pi. contorta. In brief, N. antarctica seems to 
be quite resilient to this disturbance, and no evidence that fire favors the establish-
ment and growth of recently established Pi. contorta seedlings was found (Soto- 
Mancilla 2022).

As demonstrated above, nursery trials can be used to evaluate the effect of diverse 
factors on Nothofagus establishment and development, their relationship with other 
forestry species, and the dynamics of mycorrhizal communities in their roots. Thus, 
nursery trials are an extremely useful tool and the information obtained from them 
complements what is observed in natural ecosystems, thus contributing to the over-
all understanding of this symbiosis.

14.3  Mycorrhizas in Nothofagus From Natural 
and Managed Ecosystems

14.3.1  Types of Mycorrhizas in Nothofagus

Plants belonging to the same genus usually have the same type of mycorrhiza. 
However, some species can harbor more than one mycorrhizal type, either simulta-
neously or at different life stages or environments. These plants are known as dual 
hosts (Smith and Read 2008; Teste et al. 2020). This phenomenon was observed 
among important forestry species of the genera Eucalyptus, Quercus, Pinus, Tsuga, 
Pseudotsuga, Populus, and Salix, in which both EcM and arbuscular mycorrhizas 
(AM) were described (Wang and Qiu 2006; Teste et  al. 2020). In the case of 
Nothofagus, structures resembling AM colonization (i.e., typical arbuscules and 
coils) have not been found, even though several researchers have looked for them in 
different life stages and environmental conditions (Barroetaveña com. pers.; Salgado 
Salomón et  al. 2013; Fernández et  al. 2013, 2015; Fioroni 2020). There is one 
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exception, in which an AMF species (Glomus sp.) was registered in a unique 
N. dombeyi tree but only based on molecular methods (Bidartondo et  al. 2002), 
which does not exclude the possibility of having amplified AM hyphae firmly 
attached to the roots. Consequently, and based on the available information, we 
consider Nothofagus species as exclusively ectomycorrhizal.

14.3.2  Natural and Anthropogenic Factors Influencing 
Nothofagus Ectomycorrhizas

There are many abiotic and biotic factors that influence different aspects of the EcM 
symbiosis. Different researchers have investigated how several environmental fac-
tors affect EcM dynamics in Nothofagus forests. For example,  it has been 
described that both temperature and precipitation strongly affect EcMF richness. In 
North Patagonian forests, Nouhra et al. (2012) observed that species richness and 
sporocarp biomass of hypogeous EcMF in N. pumilio and N. dombeyi forests were 
positively correlated with precipitation but negatively correlated with altitude. 
Nouhra et al. (2013) also found that altitude has a significant effect on EcMF com-
munity structure, even along a narrow altitudinal range (700 m). On the contrary, 
Truong et  al. (2019) determined in N. pumilio forests from Tierra del Fuego 
(Argentina and Chile) that EcMF community shifts were mainly mediated by soil 
pH, while elevation had no significant effects. One of the possible reasons for this 
discrepancy is that the elevation range considered in this last work was lower than 
in the previous ones (~500 m or less).

Another important factor of analyses has been seasonality, being the obtained 
results variable between Nothofagus species and seasons. For instance, species rich-
ness of hypogeous EcMF sporocarps of N. dombeyi and N. pumilio forests did not 
vary in relation to season (autumn and spring), but biomass was consistently greater 
in autumn for N. dombeyi and in spring for N. pumilio (Nouhra et al. 2012). Richness 
and diversity of EcMF in N. alpina roots was also found to be higher in autumn than 
in spring, and the relative abundance of most of the identified EcMF species changed 
seasonally (some EcMF were more abundant in spring and others in autumn) 
(Fernández et  al. 2015). However, the opposite tendency was registered in some 
N. pumilio forests, where EcMF diversity tended to be higher in spring than in 
autumn (Longo et al. 2011). In a N. antarctica shrubland, abundance of EcMF in the 
soil was higher in summer than in autumn, and despite richness and diversity did not 
vary between seasons, fungal composition was significantly affected by seasonality. 
For example, Ascomycetes predominated in autumn, while Basidiomycetes were 
more abundant in summer (Carron et al. 2020). Evidently, there is not a common or 
regular pattern of seasonality on Nothofagus EcM, which might be related to the 
fact that different methods of analyses (e.g., fruit body collection, ectomorphotype 
quantification and identification, metabarcoding approaches) on distinct Nothofagus 
species and environments were used. Much more studies using similar experimental 
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approaches in greater geographical and temporal scales are needed to finally eluci-
date if there is (or not) a clear effect of seasonality on this important symbiosis.

The impact of different natural and anthropogenic disturbances on Nothofagus 
EcM has also been worthy of consideration. A few field studies have been carried 
out to describe the impact of forest fires on Nothofagus EcM. Palfner et al. (2008) 
determined that EcM abundance in N. alpina seedlings was quite similar between 
burned and unburned sites, but EcM richness tended to be higher in the last. Besides, 
in burned sites, there was a striking dominance of D. antarctica (43.5% out of the 
total number of analyzed root tips), an EcMF species that is especially abundant on 
seedlings or young trees growing at disturbed or ruderal sites (Palfner et al. 2008). 
Longo et al. (2011) evaluated the long-term effect of fire on EcM colonization and 
ectomorphotype richness in roots of N. pumilio adult trees in three areas differing in 
precipitation regime (1500–1750 annual mm) and fire age (6–10 years). They found 
that fire might impact EcM communities and that the effects are mostly context 
dependent, varying according to different forest sites, fire age, and seasons. Despite 
these authors strongly suggested to carry out further studies to understand patterns 
and mechanisms regarding the effects of forest fires on belowground communities 
(Longo et al. 2011), as far as we know, no other studies have been performed on this 
topic, so much work is still needed. The fact that climate change predictions fore-
seen an increase in the frequency of forest fires causes concern for the future of 
Subantarctic Temperate Forests (Marchelli et al. 2021) and highlights the urgently 
need to address this type of studies in brief.

Volcanic eruptions are another relatively common disturbance in Subantarctic 
Temperate Forests, being tephra fall and deposition one of the most widespread 
effects. After the astonishing eruption of the Puyehue-Cordón Caulle volcanic com-
plex in 2011, the natural regeneration and development of N. pumilio seedlings and 
associated EcM were analyzed in the first two growing seasons after the eruption by 
Moguilevsky et  al. (2021). It was observed that only 40% of the six-month-old 
seedlings directly germinated on the tephra had EcM, being colonization values 
(<12%) significantly lower than in non-affected sites (80%). However, all the 
18-month-old seedlings growing on thick tephra deposits were as colonized by 
EcM as seedlings in sites without tephra, but diversity and community composition 
of EcMF differed significantly between these sites. Cortinarius and Inocybe species 
where only found in seedlings from the forest without tephra accumulation, while 
other EcMF were present only in those growing in the tephra, such as Aleurina 
echinata, Th. Terrestris, and To. elisii. The latter two, also registered in nursery 
cultivated Nothofagus seedlings (Barroetaveña et al. 2009; Fernández et al. 2015; 
Fioroni 2020), are known as pioneer mycobionts that may be displaced by other 
EcMF in competitive natural environments, such as natural forest soils. The early 
and increasing EcM colonization found in seedlings growing on thick tephra depos-
its supports the strong dependence of Nothofagus on this symbiosis and highlights 
its importance as an adaptive mechanism under stress conditions (Moguilevsky 
et al. 2021).

Nothofagus forests also constitute an important economic resource. In the last 
decades, priority conservation zones have been defined, and new silviculture 
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techniques have been implemented in order to achieve greater forest sustainability. 
One of these attempts was the implementation of “variable retention managements”, 
which consists of leaving intact patches of primary or secondary forest within a 
harvested area, where a few trees (~20%) remain as seed trees, regeneration shelter, 
or for conservation purposes (Hewitt et  al. 2018). When EcM colonization and 
EcMF diversity were studied in these managed ecosystems, no significant differ-
ences were observed between primary forests and intact patches, but they were sig-
nificantly lower in deforested areas, where some EcMF species were very scarce or 
absent. These findings emphasize the negative effect of this intensive practice on 
EcM and support the idea that intact patches act as refugee for EcMF diversity more 
effectively than individual trees in deforested areas (Hewitt et al. 2018). Similarly, 
Dickie et al. (2009) observed that timber harvesting reduced the presence of EcM in 
roots and caused significant shifts in fungal communities in Nothofagus rainforests, 
where some Laccaria species tended to increase in harvested areas while Russula 
species decreased in abundance. In N. betuloides forests, it was described that the 
higher the disturbance, the higher the soil fungal richness and abundance of plant 
pathogens and the lower the richness and abundance of ectomycorrhizal and sapro-
phytic fungi (Marín et al. 2017). Considering that mycorrhizas are directly related 
to vegetation dynamics and several ecosystems’ processes and services, this infor-
mation should be seriously taken into account for outlining sustainable management 
programs.

In addition to the previously mentioned experiments addressing the interaction 
between Nothofagus and Pinus and their EcM (Salgado-Salomón et  al. 2013; 
Fioroni 2020; Soto-Mancilla 2022), it was determined in the field that soil fungal 
communities associated with roots of N. alpina plants implanted beneath a native 
Nothofagus forest and a Pi. ponderosa plantation are completely different: 
Basidiomycetes are the dominating fungal taxa in the native forest and Ascomycetes 
in the plantation (Fernández et  al. 2020). Furthermore, Fernández et  al. (2020) 
determined that EcM colonization rates as well as richness and diversity of EcMF 
were significantly lower in N. alpina individuals established under the Pinus planta-
tion with respect to those growing in the native forest (both planted and naturally 
established). Out of the 26 EcMF identified in this study (Fig. 14.3), only four were 
present in N. alpina individuals implanted under the Pinus plantation, and no com-
mon fungal species between this environment and the native forest were registered 
(Fernández 2012). It was also observed that N. alpina trees growing in the planta-
tion were much shorter and had a less developed root system. This study demon-
strated that despite of being able to establish and grow in ecosystems completely 
dominated by a Pinus species, the conditions for N. alpina to establish beneficial 
EcM are probably not optimal, which might directly influence its development and 
productivity (Fernández 2012).

Dispersal is another critical factor in the ecology of EcM. Dispersal limitation 
has been shown to have strong impacts on diversity patterns of mycorrhizal fungi 
and consequently on their plant hosts. Many EcMF produce fruiting bodies to dis-
perse their spores. Some of them grow aboveground (epigeous mushrooms), shoot 
their spores into the air, and rely on wind to disperse, but in this case, most spores 
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Fig. 14.3 Most abundant ectomorphotypes found in Nothofagus alpina specimens analyzed in the 
native forest (a–j) and ectomorphotype formed by Ruhlandiella patagonica in roots of N. obliqua 
seedlings cultivated in the soil of the same forest (k). Some of these ectomorphotypes have also 
been found in other Nothofagus species, such as ectomorphotypes (j), (i), and (j) in N. obliqua and 
N. dombeyi and R. patagonica in roots of N. antarctica and N. alpina. Photo’s credits: Fernández 
N, (a–j) and Fioroni F, (k)

travel only a few meters from their source, so long-distance dispersal is relatively 
rare. Other EcMF produce enclosed belowground fruiting bodies (hypogeous fungi, 
such as truffles) and have to rely on animals that eat them for spore dispersal. Animal 
mycophagy is an important process that increases the chances of EcMF, both epi-
geous and hypogeous fungi, to disperse far from the source. This dispersal mecha-
nism has been mainly studied in mammals from the northern Hemisphere. Insects 
and other invertebrates have also been occasionally shown to disperse fungal spores 
(Caiafa et al. 2021 and references within). In Patagonia, it was observed that exotic 
EcMF associated with Ps. menziesii and usually dispersed by invasive mammals 
(mainly wild boar and deer) are present even in sites where these animals have been 
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historically absent, so it becomes evident that alternative dispersal mechanisms are 
operating in their dispersion (Policelli et al. 2022). In this sense, Caiafa et al. (2021) 
have recently shown that two endemic Patagonian birds, chucao (Scelorchilus 
rubecula) and black-throated huet-huet (Pteroptochos tarnii), regularly consume 
and disperse copious viable spores from hypogeous and other EcMF. These findings 
indicate that birds may act as cryptic but critical fungal dispersal agents not only in 
Patagonia but also in other ecosystems.

14.3.3  Ectomycorrhizal Fungal Diversity in Native 
Nothofagus Forests

The Southern Hemisphere harbors many unique fungal lineages that are absent 
from the Northern Hemisphere (Tedersoo et  al. 2014). In South America, great 
efforts have been made to describe the structure and diversity of EcMF communities 
in Nothofagus forests. There is a general consensus that in these forests soil fungal 
communities are extensively dominated by Basidiomycetes (Fernández et al. 2020; 
Mestre and Fontenla 2021). This is also true for EcMF, either in the soil (Truong 
et al. 2017), roots (e.g., Nouhra et al. 2013; Fernández et al. 2015; Fioroni 2020; 
Mestre and Fontenla 2021; Soto-Mancilla 2022), and fruit body occurrence (Nouhra 
et al. 2012). EcMF communities from Subantarctic Temperate Forests are relatively 
diverse in terms of taxonomic groups, mostly involving members of the /cortinarius 
in the first place, followed by /inocybe, /ramaria-gautieria, /tomentella-thelephora, /
clavulina, and /tricholoma lineages. The /russula-lactarius lineage is remarkably 
species poor compared with almost every other EcM region of the world, whereas 
the /suillus-rhizopogon, /boletus, and /pisolithus-scleroderma lineages are almost 
completely absent, which is a unique pattern at the global scale (Barroetaveña et al. 
2019; Nouhra et al. 2019). These tendencies have been observed even using differ-
ent experimental approaches, such as sporocarp collection (voucher specimens) or 
OTU amplification from colonized root tips and soil samples (Fig. 14.4). The over-
all EcMF community of these South American forests is relatively similar to that of 
other Nothofagus-dominated forests in New Zealand and Australia (Nouhra et al. 
2013; Truong et  al. 2017; Nouhra et  al. 2019). Even more, the Subantarctic 
Temperate Forests harbor a prominent set of exclusively Gondwanan taxa that 
includes at least five lineages: /aleurina, /descolea, /austropaxillus, and /porpoloma, 
as well as species of Underwoodia (an exclusively Southern Hemisphere branch of 
the /tuber-helvella lineage) (Truong et al. 2017; Nouhra et al. 2019).

It is interesting to mention that there are many common EcMF between dif-
ferent Nothofagus species (Fig. 14.3). Palfner (2001) described 15 EcM mor-
photypes, associated with natural evergreen and deciduous Nothofagus forest in 
Southern Chile and Argentina and found no significant differences between the 
EcMF communities of these distinct forest types. More recently, the biodiver-
sity and community composition of EcMF were simultaneously assessed in 
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N. dombeyi, N. obliqua, and N. alpina forests, and no significant differences 
between these forests types were neither noticed (Nouhra et al. 2013). This is 
because some of the most common and abundant mycobionts, such as species of 
Cenococcum, Clavulina, Cortinarius, Inocybe, and Tomentella, were found in 
association with the different Nothofagus species. Barroetaveña et  al. (2019) 
also showed that Nothofagus species share several EcMF but stated that 
N. dombeyi had the highest number of unique EcM species, followed by N. pum-
ilio, N. antarctica, and N. obliqua. One example of this is the EcMF Co. pyro-
myxa that was found across a wide latitudinal range of Subantarctic Temperate 
Forests but always in association with the evergreen N. dombeyi (Lam et al. in 
review). This type of comparative studies has laid the basis to preselect some 
EcMF that could be of biotechnological importance, such as Au. statuum, Co. 
fragilis, Co. xiphidipus, and Ha. purpurea (all Basidiomycetes), which have 
been proposed by Barroetaveña et  al. (2019) as candidates for nursery spore 
inoculations and to further scientific evaluation. We would like to include in this 
list the ascomycetous fungi Ru. patagonica (Figs. 14.3k and 14.4c), which have 
been found in roots of N. antarctica (Soto-Mancilla 2022), N. obliqua (Fioroni 
2020), and N. alpina (Fernández et al. 2013 where it was named as Peziza sp. 2) 
and seems to improve seedlings’ growth (Fioroni 2020). Further associations 
between specific EcMF and hosts are likely waiting to be discovered as more 
molecular-based studies address the EcM communities of Subantarctic 
Temperate Forests (Nouhra et al. 2019).

Studies based on environmental sequences have detected in Nothofagus forests 
several previously unknown fungal lineages, thereby demonstrating that fungal 
diversity is probably much higher than presently known. For example, Truong et al. 
(2017) revealed surprisingly high species diversity in some fungal lineages where 
only a few species have been previously described from South America, such as /
austropaxillus and /descolea, and detected relatively low diversity in several EcM 
lineages that are hyperdiverse in other regions of the world (e.g., /amanita, /boletus, 
/russula-lactarius) (Fig. 14.4). It was also observed that most of the obtained OTUs 
(46%) matched sequences originating from South America, but many others (20%) 
had their closest match with sequences from Australasia, highlighting both the scar-
city of sequences from South America and the historical biogeographic connection 
of these two regions. This biogeographic pattern was particularly striking within 
some fungal lineages, as Ruhlandiella, Amylascus, and Gymnohydnotrya (Pezizales), 
since members of these genera were so far known only from Australasia (Truong 
et al. 2017).

Recently, there has been significant efforts to sample and analyze the global dis-
tribution of soil and root-inhabiting fungi at a global scale. The pioneer study on this 
topic was carried out by Tedersoo et al. (2014) and included 365 sites worldwide. 
Other studies have been performed since then, including some focused on mycor-
rhizas (e.g., Soudzilovskaia et al. 2015; Truong et al. 2019). Evidence on how well 
represented are the EcMF from South American Nothofagus forests could be esti-
mated by analyzing three sources of available, highly used, global datasets that 
specifically target soil fungi: GlobalFungi (Větrovský et  al. 2020), Global Soil 
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Fig. 14.4 Ectomycorrhizal fungal richness described in Nothofagus forests from Argentina and 
Chile using different experimental approaches: collection of vouchered specimens or molecular 
and OTUs recovered from EcM roots (data provided by Nouhra E and modified from Nouhra et al. 
2019) in addition to the assignment of species hypothesis (SH) on the FungalTraits database 
(Põlme et al. 2020). Some of the most important ectomycorrhizal fungal species in Subantarctic 
Temperate Forests from Argentina and Chile: (b) Cenococcum geophilum, (c) Ruhlandiella pata-
gonica, (d) Descolea antarctica, (e) Ramaria patagonica, (f) Cortinarius magellanicus

Mycobiome (Tedersoo et al. 2021), and FungalTraits (Põlme et al. 2020). The first 
one includes all published data on fungal community composition and biodiversity 
obtained by next-generation sequencing (Větrovský et al. 2020). It allows to obtain 
different fungal species hypothesis and filter them by geographic region, taxa, and/
or sequence. On its third release, this database contained 36,684 samples from 367 
studies, and only 3.1% of them were from South America. Among these samples, 
222 were collected in Nothofagus forests and correspond to only three studies 
(Tedersoo et  al. 2014; Marín et  al. 2017; Truong et  al. 2019). The Global Soil 
Mycobiome dataset (Tedersoo et  al. 2021) includes information from more than 
3200 plots in 108 countries, using standardized and throughout sampling designs 
and PacBio sequencing of the full-length ITS and 18S-V9 variable regions, which 
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allows a much deeper taxonomic classification with respect to previous methods. 
Currently, this dataset comprises a total of 905,841 OTUs (Tedersoo et al. 2022). 
Within this dataset, there is information obtained from 47 plots located in broadleaf 
forests from Argentina and Chile. A preliminary analysis of this data shows that 
there is an extremely high endemicity of EcMF present in Nothofagus forests as 
compared to the rest of South America biomes (Nouhra et al. 2019; Tedersoo et al. 
2022), thus being this biome one of the most endemic for this fungal guild in the 
whole southern hemisphere. The third database, FungalTraits (Põlme et al. 2020), 
contains information on functional assignments and traits of a total of 95,227 spe-
cies hypothesis, but only 776 (0.84%) have Nothofagus as the interacting plant taxon, 
and just 310 of them were sampled in Argentina and Chile. A total of 146 of these 
species hypothesis was functionally classified as unspecified/unassigned (47.1%), 
61 as different types of saprotrophs (19.7%), and 82 (25.5%) as EcMF, mainly cor-
responding to the genera Cortinarius and Inocybe (ten and nine species hypothesis, 
respectively; Fig. 14.4).

Although environmental sequencing can rapidly detect diversity and elucidate 
ecological patterns, these approaches depend on informative sequence databases for 
fungal identification (Truong et al. 2017). In studies using molecular tools to asses 
EcMF (and other fungal) communities in Nothofagus forests, many of the sequences 
cannot be identified at a meaningful taxonomic level. This is because there is still a 
lack of accurate taxonomic information on the immense fungal diversity inhabiting 
these forests (Truong et al. 2017; Salgado-Salomón et al. 2021). Despite it is known 
that it is critical to compile and validate high-quality environmental sequences, it is 
also important to consider that “traditional” methods are irreplaceable and comple-
mentary to “next-generation” approaches. Consequently, not only barcoding her-
barium collections but also high-throughput collect-and-sequence inventories are 
considered highly effective to document fungal diversity and are instrumental for 
future studies of plant-fungal symbioses. Besides, herbarium vouchers provide 
much more than just DNA barcodes, and fresh well-documented specimens remain 
critical to reconstruct robust phylogenies, linking sequence data to morphology, and 
supply ecological information on hosts and substrate associations. Specimens can 
also be used for genomic studies in a way that environmental samples cannot 
(Truong et al. 2017 and references within). Therefore, we agree with Truong et al. 
(2017), who stated that given the increasing threats to biodiversity due to habitat 
loss and climate change, collecting vouchered specimens and associated data, and 
sharing these resources are more necessary today than ever before.

14.4  Conclusion

The conspicuous and intrinsic relationship between Nothofagus species and their 
EcM is indisputable, as well as the fact that there are diverse biotic and abiotic fac-
tors influencing EcM formation and EcMF diversity. In this chapter, we aimed to 
show not only the importance of carrying out field studies based on different 
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methods of analysis but also the relevance of performing nursery trials under con-
trolled conditions, which complement what can be found or described in natural 
ecosystems. Together, both experimental approaches provide valuable information 
on the ecology of this symbiosis in Nothofagus forests and the potential application 
of EcMF as biotechnological tools.

Although much progress has been made in the study of EcM occurrence and 
dynamics in different Nothofagus species and forest types, either natural or man-
aged, there is still a long way to go. On the one hand, Subantarctic Temperate Forests 
have been relatively little studied in relation to other forest systems in the world. On 
the other hand, there are some phenomena of great importance at the landscape and 
ecosystem scale (such as fires, volcanic eruptions, or biological invasions) that 
severely affect these forests not only aboveground but also belowground. The 
“belowground perspective” of these high-magnitude disturbances has been quite 
overlooked, thus deserving further attention and investigation in the near future. 
Studies at larger geographic and temporal scales and using similar experimental 
approaches are also needed to elucidate common ecological and biogeographical 
patterns and to identify how various factors associated with global change might 
influence EcM and their host plants’ distribution. This information would be essen-
tial to make future projections and identify possible strategies for mitigating climate 
change, restoring degraded environments, optimizing assisted migration of forestry 
species, and improving programs of sustainable forestry production and management.
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15.1  Forest and Espinal Ecoregion

United Nations Convention on Biological Diversity (UN-CBD 2006) defined forest 
as a land area of more than 0.5 ha, with a tree canopy cover of more than 10%, 
which is not primarily under agriculture or other specific non-forest land use. In the 
case of young forest regions where tree growth is climatically suppressed, the trees 
should be capable of reaching a height of 5 m in situ and of meeting the canopy 
cover requirement (Chazdon et al. 2016). Forests are ecosystems formed by plant 
communities that host great biodiversity not only of plant species but also of ani-
mals and microorganisms; hence, they are a critical reservoir of the world’s biodi-
versity and home to most of the terrestrial biodiversity of our planet (MEA 2005; 
FAO 2020).

On the Earth, these ecosystems occupy a total area of 4.06 billion hectares, and 
about 1.6 billion people survive thanks to the supply of services they obtain from 
forests. Despite the importance of these biomes, deforestation and forest degrada-
tion continue to occur at an alarming rate, contributing significantly to the loss of 
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biodiversity. It is estimated that in the last three decades, 420 million hectares of 
forest have been lost due to conversion to other land uses. Agricultural expansion 
remains the main driver of deforestation and forest degradation. Large-scale com-
mercial agriculture accounted for 40% of tropical deforestation between 2000 and 
2010 and local subsistence farming for another 33% (FAO 2020). This conversion 
causes the loss, fragmentation, or degradation of available habitats for most species 
and is therefore one of the main threats to biodiversity worldwide (Guida Johnson 
and Zuleta 2013).

South America, like a large part of the Latin American countries, is not exempt 
from the consequences of the conversion and degradation of forest ecosystems. In 
Argentina, the increase in the world population and the growing global demand for 
products were some of the main forces that drove forestry and agricultural changes 
in the last 150 years (Risio Allione 2016). In this scenario of overexploitation and 
misuse of resources, a territory with high current or potential agricultural productiv-
ity and low population, such as central Argentina, experienced a drastic change in 
its forest ecosystems and land uses as occurs in the Espinal areas (Viglizzo and 
Jobbágy 2010).

The Espinal is an Ecoregion of the Argentine Chaco-Pampean plain, which occu-
pies a wide arc of forests surrounding the Pampa Ecoregion to the North, West, and 
South, with an area of 291,941 km2. It covers the south of Corrientes province, the 
northern half of the Entre Ríos province, a central strip of the provinces of Santa Fe 
and Córdoba, the center and south of San Luis province, the eastern half of La 
Pampa province, and the south of the province of Buenos Aires (Matteucci 2018). 
The predominant landscape is flat to gently undulating plain and, to a lesser extent, 
low mountains, on loess and sandy soils. Given the great extension of the Ecoregion, 
especially in a North-South direction, it includes several climatic types. In the 
North, it is hot and humid, while in the South and West, it is temperate and dry with 
marked water deficits (Matteucci 2018). The soils were formed on loess sediments 
of lacustrine, marshy, and alluvial origin and are determined by humid, subtropical 
to temperate climatic conditions, in a variable humidity regime of udic or aquic 
type. The dominant soils are clayey, and the drainage is generally moderate to 
imperfect. Given the large extension of the Ecoregion, there are a variety of Orders 
and Great Groups represented. Among the Orders, the Mollisols, Vertisols, and 
Alfisols stand out in the Northern Complexes, with somewhat more humid and 
warm climates; Entisols and Aridisols in the Southeast Complexes, with drier and 
cooler climates; and sandy soils (Matteucci 2018).

The vegetation is a combination of tree or shrub species. Mimosoid legumes 
predominate with xerophytic characteristics and an herbaceous stratum dominated 
by tussock grasses. The dominant types of vegetation are the forest, which in some 
cases occupies a considerable area, and the savannah, from very open to park-like 
(Oyarzabal et  al. 2018). The typical zonal vegetation is represented by the open 
sclerophyll forest, dominated by species of the Prosopis, with a height of up to 
10 m, and by the savannah, with a matrix of megathermal or mesothermal grasses 
depending on the latitude (Lewis and Collantes 1973; Cabrera 1976; Oyarzabal 
et al. 2018). Along the Espinal Ecoregion, there are important physiognomic and 
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composition variations of plant species, due to factors such as its biogeographical 
transition situation, the heterogeneity of the relief and soils, and economic activity, 
which produces clearing, alterations of the natural fire regime, the introduction of 
exotic species, and selective forest extraction. As a consequence, forests now form 
intricate and heterogeneous mosaics with patches of a range of seral states and crop 
plots (Matteucci 2018). In the Ecoregion, there are some 93 endemic species, 
Prosopis caldenia Burkart (“caldén”), which is endemic to Argentina, and Condalia 
microphylla Cav (“piquillín”), Senecio subulatus D. Don ex Hook. & Arn. (“romer-
illo”), Gaillardia megapotamica (Spreng.) Baker (buttercup), among others (SAyDS 
2007a). Due to biogeographical and ecological differences, the Espinal Ecoregion 
has been subdivided into three floristic districts, according to the dominant tree spe-
cies: Ñandubay District, Algarrobo District, and Caldén District (Cabrera 1976; 
Matteucci 2018) (Fig. 15.1).

The forests of the Espinal region have been altered mainly as a result of the 
expansion of the agricultural frontier and the unsustainable use of forest resources, 
which caused a significant reduction in the area occupied by them (SAyDS 2007a). 
At the beginning of the colony, in the mid-1800s, with the sole presence of indige-
nous settlers, the natural environment did not suffer significant alterations. At the 
beginning of the so-called desert campaign, the settlers begin to take over vast 
regions of the Espinal, establishing the first agricultural exploitations (SAyDS 
2007b). During the end of the eighteenth century and the beginning of the nine-
teenth century, the installation of the railway caused the indiscriminate extraction of 
timber vegetation to provide the railway constructions with fuel and sleepers, as 
well as the delimitation of livestock and agricultural fields that require the use of 
wood suitable for poles, corrals, and other rural installations causing, even today, 
the excessive felling of Prosopis due to its rotten wood. Fire, used in many cases as 
a tool for managing natural pastures, can get out of control and cause fires with 
negative effects on forest formations and natural pastures. Starting in 1950, the agri-
cultural frontier expanded from the humid pampas to the interior, causing extensive 
clearing in areas of unstable ecological balance due to their scarce water resources 
(DB-SAyDS 2003).

Deforestation often involves the removal of plant biomass through logging of 
high-value wood trees and slashing and burning of low-value trees before consoli-
dation into cattle ranching operations or mechanized agriculture with highly dis-
turbed soils. This results in loss of soil organic matter and nutrients and changes to 
soil physical properties that disrupt resource supply and habitat suitability to a vari-
ety of soil organisms (Neill et al. 1997; Garcia-Montiel et al. 2000; Cerri et al. 2004; 
Smith et al. 2016). Consequently, deforestation can dramatically alter the structure 
of soil communities (Crowther et al. 2014), commonly through the loss of specialist 
species (Mueller et al. 2016), which in turn leads to decreased functional diversity 
and functional homogenization (Clavel et  al. 2011; Nordén et  al. 2013; FAO 
et al. 2020).

Arbuscular mycorrhizal fungi (AMF) (phylum Glomeromycota; Schüßler et al. 
2001) comprise one of the most ubiquitous groups of soil microbes (Dickie et al. 
2014). AM fungi live in symbiosis with the roots of about 80% of terrestrial plant 
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Fig. 15.1 Districts belonging to the Espinal Ecoregion. References: Ñ: Ñandubay District, in red; 
A: Algarrobo District, in yellow; C: Caldén District, in green. Image modified from the original 
image by Silvia D. Mateucci, available free at Morello et al. (2018)

species (Smith and Read 2008) and provide nutrients (mainly P and N) to their host 
plants in exchange for plant-assimilated carbon. AMF alleviate plant abiotic stress 
and can increase plant resistance to pathogens (Smith and Read 2008; Pozo et al. 
2015). Knowledge is increasing on the geographic distribution and community 
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ecology of these fungi (García de León et al. 2018). Therefore, the objectives of this 
chapter include the review of the data available in the literature on the AMF com-
munities registered in the Espinal Ecoregion and the determination of differences 
between the AMF communities present in the different Espinal Districts.

15.2  Arbuscular Mycorrhizal Fungi

The arbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are a relevant 
group of soil fungi with a worldwide distribution (Stürmer et al. 2018), associated 
with almost 80% of the vascular plants of the Earth (Smith and Read 2008) and 
comprise ∼343 morphologically defined (http://www.amf- phylogeny.com/) or 
350–1000 molecularly defined taxa (Davison et al. 2015). The multifunctional role 
of AMF in plant nutrition, pathogen protection, stress tolerance, and soil structure 
provision is well recognized (Chen et al. 2017). The different soil types, crop spe-
cies, and land use affect the AMF diversity and their function inside the microbial 
soil communities, and for these reasons, some AMF species may be used as envi-
ronmental indicators (Bouffaud et al. 2016; Oehl et al. 2017). In fact, it is reported 
(Boivin et al. 2016) that many anthropogenic factors, both in the past and nowadays, 
can modify and shape AMF communities, which could be considered a potentially 
suitable target for studying regional and local effects on soil microbial diversity 
with potential impact to global level (Pärtel et al. 2017; Ontivero et al. 2020).

External factors (abiotic and biotic) and intrinsic properties of AMF species (dis-
persal ability, rates of speciation, and extinction) affect the AMF geographical dis-
tributions (Chaudhary et al. 2008). For instance, the abiotic factors of temperature 
and precipitation constrain the AMF occurrence (Davison et al. 2015), while biotic 
ones such as host preferences determine the rhizospheric AMF community (Soteras 
et al. 2016; Senés-Guerrero and Schüßler 2016). Moreover, anthropogenic activities 
like agricultural practices that alter soil conditions could influence the occurrence of 
AMF taxa (Cofré et al. 2017). At the same time, either external or internal factors 
may indirectly influence each other, causing changes in AMF taxa occurrence and 
distribution (Chaudhary et  al. 2008). Currently, an increasing number of studies 
attempt at unravelling the worldwide geographical patterns of AMF (Öpik et  al. 
2010; Kivlin et al. 2011; Öpik et al. 2013; Tedersoo et al. 2014; Davison et al. 2015). 
These researchers reviewed AMF descriptions based on DNA methods and showed 
contrasting results of AMF biogeographical patterns. For instance, Öpik et  al. 
(2010) found that two-thirds of AMF taxa showed restricted distribution, but 
Davison et al. (2015) postulated that most of the AMF taxa show a cosmopolitan 
distribution and that species richness of AMF virtual taxa decreases with latitude at 
the global scale (Cofré et al. 2019).

The factors that influence the structure of AMF communities at both local and 
regional scales have not yet been studied in sufficient depth. Studying the influence 
of environmental drivers on AMF community structure at different spatial scales 
(i.e., local, regional, and global) can give us a more robust overview of the ecology 
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of arbuscular mycorrhizal systems (Vályi et al. 2016). A factor that may influence 
the distribution of AMF taxa is environmental filtering, including the abiotic factors 
in a particular location that prevent the establishment or persistence of species. 
Through studying AMF taxa at higher taxonomic levels, it became apparent that 
taxa belonging to different AMF families appear to have distinct ecological prefer-
ences (Veresoglou et al. 2013). As an example, species of the family Glomeraceae 
appear to thrive in soils with high availability of nutrients, while fungi in the 
Gigasporaceae prevail in soils with low nutrients (Lekberg et al. 2007). This may 
reflect physiological differences found across AMF groups and, depending on the 
relative composition of the AMF community, give rise to systematic differences in 
the kind of ecosystem services the plant hosts receive from their mycosymbionts 
across different environments (Sikes et al. 2010; Sousa et al. 2018).

15.3  Arbuscular Mycorrhizal Fungi Diversity 
in the Espinal Ecoregion

In the Espinal Ecoregion understudy, only four published works were found, and we 
add a work that is currently being corrected; for this reason, the analyses that were 
carried out regarding the regional distribution of AMF species are limited. In the 
Ñandubay District, three works carried out were found (Velázquez et al. 2008, 2010, 
2013), all in the “El Palmar” National Park in which the diversity of AMF species is 
reported using morphological techniques. In the Algarrobo district, the only work 
published (García de León et al. 2018) was performed with molecular techniques, 
and not all virtual taxa found are reported when comparing the richness of AMF 
species found in native forest soil and soybean crops; however, a greater diversity is 
reported in the native. In the district of Caldén, no published works were found; for 
this reason, we provide the data of our work review (Ontivero et al. unpublished 
data). This work determined the diversity of AMF species, through morphological 
techniques, found in native forests of Prosopis caldenia Burkart.

Comparing the works that determine diversity in natural environments, we found 
that the highest average diversity was found in the Ñandubay district. The lower 
species richness found in the other districts could be explained, among other factors, 
by the floristic differences that exist between the sample collection sites belonging 
to each district. In the Ñandubay district, the samples were collected in this National 
Park, which is one of the national parks in Argentina with the greatest floristic diver-
sity, with more than 700 species of vascular plants (Biganzoli et al. 2001; Velázquez 
et  al. 2013). This diversity of plants could increase the probability that an AMF 
species finds a suitable host (Velázquez et al. 2013), favoring an increase in diver-
sity in this particular ecosystem.

On the other hand, comparing the number of species corresponding to each fam-
ily (Fig. 15.2), in the districts in which diversity was determined with morphologi-
cal techniques (Ñandubay and Caldén), it was found that the families Glomeraceae 
and Acaulosporaceae were dominant. This dominance of Glomeraceae and 
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Fig. 15.2 Total species richness and richness in every family of AMF in Ñandubay and Caldén 
Districts

Acaulosporaceae has been observed at different geographic scales, with records for 
South America (Cofré et  al. 2019) and the whole world (Stürmer et  al. 2018). 
Likewise, Glomeraceae is the dominant family in all continents and cosmopolitan, 
since it has been recorded in all biomes of the world (Stürmer et al. 2018). However, 
it is necessary to consider the composition of the species in each District (Table 15.1), 
because although the number of species is similar, the species shared between both 
districts corresponds to 16 (Fig. 15.3), that is, they share less than half of the total 
richness.

The Algarrobo and Caldén Districts are the driest within the Espinal Ecoregion. 
Comparing the richness of species with other Argentine Ecoregions with similar 
temperatures and rainfall, we find a greater richness in the Espinal. Coinciding with 
the results obtained in other ecosystems, in many semiarid ecosystems, researchers 
have detected exceptionally diverse AMF assemblages in the dual niche occupied 
by these fungi, plant roots (Wubet et al. 2004; Martínez-García et al. 2015), and soil 
(Xu et al. 2016; Sousa et al. 2018). The differences found in terms of average diver-
sity may be the result of differences in terms of dominant species and the different 
soils that exist in each district. However, the richness found coincides with the 
results obtained in an analysis of the ecoregions carried out at the South American 
level (Cofré et al. 2019).

Research that compares the effect of deforestation and the subsequent start of 
agricultural activity is scarce in the Ecoregion. The work of García de León et al. 
(2018) in the Algarrobo District was the only one found so far. In this work, a 
decrease in the diversity of AMF species is observed when comparing native forests 
dominated by the tree genus Prosopis compared to soybean crops. This decrease in 
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Table 15.1 List of arbuscular mycorrhizal fungi (AMF, Glomeromycota) species described or 
cited in the Districts of Espinal Ecoregion, considering only the morphological descriptions at 
species level

Family Morphospecies Ñandubay District Caldén District

Acaulosporaceae Acaulospora alpina x
Acaulospora bireticulata x
Acaulospora colombiana x
Acaulospora delicata x
Acaulospora denticulata x
Acaulospora dilatata x
Acaulospora entreriana x
Acaulospora excavata x
Acaulospora lacunosa x x
Acaulospora laevis x x
Acaulospora mellea x x
Acaulospora morrowiae x
Acaulospora nicolsonii x
Acaulospora punctata x
Acaulospora rehmii x
Acaulospora spinosa x
Acaulospora scrobiculata x x
Acaulospora thomii x
Acaulospora tuberculata x

Diversisporaceae Sieverdingia tortuosum x
Dentiscutataceae Dentiscutata biornata x x

Dentiscutata heterogama x
Gigasporaceae Gigaspora candida x

Gigaspora gigantea x x
Gigaspora margarita x

Racocetraceae Cetraspora gilmorei x
Racocetra beninensis x
Racocetra castanea x
Racocetra coralloidea x
Racocetra fulgida x x

Scutellosporaceae Scutellospora arenicola x
Scutellospora calospora x x
Scutellospora dipapillosa x

Entrophosporaceae Claroideoglomus claroideum x
Claroideglomus etunicatum x x
Entrophospora infrequens x

(continued)
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Table 15.1 (continued)

Family Morphospecies Ñandubay District Caldén District

Glomeraceae Funneliformis coronatum x x
Funneliformis dimorphicus x
Funneliformis geosporum x
Funneliformis mosseae x x
Glomus ambisporum x
Glomus badium x
Glomus glomerulatum x
Oehlia diaphana x x
Rhizoglomus aggregatum x x
Rhizoglomus clarum x
Rhizoglomus fasciculatum x x
Rhizoglomus intraradices x
Rhizoglomus irregulare x
Rhizoglomus microaggregatum x x
Sclerocystis sinuosa x
Septoglomus constrictum x x
Septoglomus deserticola x
Simiglomus hoi x

Paraglomeraceae Paraglomus laccatum x

Fig. 15.3 Venn diagram comparing AMF morphospecies occurrence in Ñandubay District and 
Caldén District

diversity may be caused by the type of agricultural activity carried out in the region, 
which probably negatively affects the soil and the microorganisms that live in it.

In different investigations, it was demonstrated that the agricultural practices 
strongly affect soil’s physical and chemical characteristics that impact the microbial 
communities affecting their abundance, diversity, and activity (Kladivko 2001; 
Govaerts et  al. 2007; Lienhard et  al. 2014). The effect of the agronomic 
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management practices could have positive or negative effects on microbial biodiver-
sity (Lehman et  al. 2015; Pellegrino et  al. 2020), affecting also the interaction 
between different microbial communities including bacteria and fungi (Dodd and 
Ruiz- Lozano 2012), which are proposed as the key to soil sustainability (de Vries 
and Wallenstein 2017). Fungi are widely distributed among all terrestrial ecosys-
tems with huge biodiversity and ecological importance by their principal role in 
ecosystem processes such as soil carbon cycling, plant nutrition, and phytopathol-
ogy (Hawksworth and Lücking 2017; Ontivero et al. 2020).

Particularly, high intensity agricultural land use, associated with mechanical dis-
turbance and abundant application of chemicals, tends to exhibit lower AMF diver-
sity, having shown that the richness of AMF is reduced with the intensification of 
agricultural practices (Oehl et al. 2004; Verbruggen et al. 2010; Wagg et al. 2011). 
In particular, the species richness as well as the abundance of AMF spores can be 
widely affected by fertilization, cropping sequence, and fallow periods (Douds and 
Millner 1999; Köhl et  al. 2014) and tillage practices (Kabir 2005; Alguacil 
et al. 2008).

15.4  Conclusions and Final Comments

The AMF community characterization is historically based on the measurement of 
morphological features of spores; although, in recent years, this technique has been 
often replaced with DNA-based methods (Sousa et al. 2018). However, in South 
America (SA), molecular characterization of AMF communities is fairly scarce 
(Grilli et al. 2015; Soteras et al. 2016; Senés-Guerrero and Schüßler 2016; Cofré 
et  al. 2019). Both approaches have limitations but can provide complementary 
information for taxonomic and ecological studies. Spore-based approaches yield 
important information concerning land management on AMF propagules, abun-
dances, and richness in the soil (Säle et al. 2015; Overby et al. 2015). Furthermore, 
morphological spore identification may allow better differentiation of fungal taxa 
and can be quite sensitive in terms of detecting changes in AMF community com-
position and diversity (Wetzel et al. 2014; Sousa et al. 2018).

In the Espinal Ecoregion, a species of Acaulospora has been described that was 
unknown to science until the development of the investigations of Velázquez et al. 
(2008, 2010, 2013). In addition, in all the works analyzed, there are species that 
could not be determined. Particularly, in the only work that was developed using 
molecular techniques, they determined that there is a significant number of species 
considered key, which have not yet been cultivated or described. For this reason, and 
considering that there are more than 90 species of endemic plants in the Ecoregion, 
it is likely that there is a significant number of AMF species in the region that have 
not yet been discovered or described, considering the close relationship that exists 
between the plants and AMF. Therefore, the Ecoregion could host a significant 
number of AMF species that are unknown to science. Considering that some species 
are more sensitive than others to changes in plant species and considering the 

E. Ontivero and M. A. Lugo



315

constant deforestation that exists in the Spinal Ecoregion, it is necessary to increase 
the resources allocated to AMF research, both with morphological and molecular 
techniques.

In the last 50 years, the Espinal has suffered a significant reduction in the original 
area occupied by forests. So much so that much of the natural vegetation that existed 
in the provinces of Entre Ríos, Santa Fé, Córdoba, and Buenos Aires has disap-
peared (SAyDS 2007a). In provinces such as San Luis and La Pampa, there are still 
important relics of this Ecoregion; however, the management of these ecosystems is 
not always adequate, since they are found on private properties that are not always 
properly advised, so it is necessary to review them. The management of forest eco-
systems is important in their conservation because not only deforestation but also 
most forms of within-forest degradation (such as wildfires and selective logging) 
can have pronounced impacts on biodiversity (Gibson et al. 2011) in general. Recent 
research shows that soil biodiversity and related ecosystem processes may be lost 
after even very-low, reduced impact logging intensities (França et  al. 2012; de 
Carvalho Mendes et  al. 2017; FAO et  al. 2020). Considering that AMF are key 
microorganisms in maintaining the health of plant species, especially in arid or 
semiarid ecosystems (Smith and Read 2008), and the study of the composition and 
dynamics of AMF communities in forests that have suffered a considerable reduc-
tion in the area they occupied, it is necessary to develop adequate reforestation 
plans, with the main objective of recovering forest ecosystems.
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16.1  Outline

Edible mushrooms have been part of the human diet almost worldwide since prehis-
torical times, many of them are formed by mycorrhizal species (Pérez-Moreno et al. 
2021). A comprehensive treatise on edible ectomycorrhizal mushrooms from a 
global perspective, but with special focus on some American countries, has recently 
been edited by Pérez-Moreno and coauthors (2020). Earlier, a checklist of saprobi-
otic, parasitic, and mycorrhizal fungi with edible sporomas has been published by 
Garibay-Orijel et al. (2010) for Mesoamerica and South America. In this chapter, 
we present a more specific and updated review of habitats, diversity, management, 
and conservation of ectomycorrhizal edible fungi (hereafter EEMF) in South 
America, especially in the Andean-Patagonian region of Argentina and Chile.

At species level, many ectomycorrhizal fungal symbionts are characterized 
by specific requirements in terms of vegetation type and climatic and edaphic 
conditions (Lilleskov and Parrent 2007); having co-evolved with their respec-
tive tree host, their geographical distribution is often more sharply defined than 
in case of less specific, saprobiotic species. Contrasting the dominance, high 
diversity, and wide extension of ectotrophic forests in the northern hemisphere, 
especially in the temperate and boreal zones, South America is characterized by 
only rather few autochthonous ectomycorrhizal tree taxa in disjunct areas 
(Singer and Morello 1960; Nouhra et al. 2019). Most of those areas coincide 
with cool temperate climate zones delimited by altitude or latitude, such as the 
high Andean oak forests in Colombia, the Alnus acuminata belt along the north-
ern to central Andean slope, and the Andean Patagonian Nothofagus forests of 
Southern Chile and Argentina. Especially the more extensive woodlands with 
the presence of Fagales trees bear a considerable variety of autochthonous fungi, 
which produce edible mushrooms, although the mycophytosociological back-
ground of the respective Quercus and Nothofagus forests, which are geographi-
cally isolated from each other, is very different: The Q. humboldtii ectotroph in 
Colombia shows affinity to Central and Southern North America, whereas the 
ectomycorrhizal community associated to Nothofagus is of Gondwanan origin 
(Nouhra et al. 2019).

The scarce historical records indicate that collection and consumption of EEMF 
have a long tradition in  local and regional indigenous populations (Coña apud 
Moesbach 1930; Molares et al. 2020). Although mushroom hunting has hardly been 
as popular among a broader public in South America as it is in many countries of the 
northern hemisphere (Commandini and Rinaldi 2020; Niveiro et al. 2009), a grow-
ing interest in EEMF can be observed in more recent times, as well with a commer-
cial as a recreational background and evidently boosted by increased use of social 
media via Internet.

Among the most notorious anthropogenic changes of landscape and vegetation 
in many parts of South America during the last 50+ years is the large-scale replace-
ment of native forests with timber trees, mostly conifers and eucalyptus (Echeverría 
et al. 2006). An increasing number of adventitious ectomycorrhizal fungal species 
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forms part of these alien ectotroph communities, among them edible taxa, such as 
Suillus or Lactarius, which are not compatible with native ectomycorrhizal trees but 
often grow in large numbers in their monoculture habitat, making them a sought- 
after non-timber forest product not only for local and regional trade but also for food 
industry and exportation (Silva-Filho et al. 2020).

Finally, attempts have been made to culture introduced EEMF, such as truffles 
(Reyna and García-Barreda 2014), or to boost production of certain species in their 
natural habitat through enrichment of substrate with selected inoculum, a technique 
of mycosilviculture, which is increasingly applied worldwide (Wang and Chen 2014).

In this chapter, we did not include those wild EEMF from the region, which have 
either occasionally been categorized as being edible in the sense of being nontoxic 
and palatable but of low quality, such as Laccaria spp., or which represent rare and/
or insufficiently known species, but we rather focused on those taxa that are regu-
larly harvested and consumed and/or that have a market potential at local, regional, 
or international scale.

16.2  Edible Ectomycorrhizal Mushrooms in Native Forests

A detailed taxonomic inventory of ectomycorrhizal macromycetes growing in 
Colombian Quercus forests, which represent the second most important natural 
ectotroph area in South America, has been provided recently by Vargas and Restrepo 
(2020). The authors mention 37 edible species for the area. Previously, Peña-Cañón 
and Enao-Mejía (2014) published a list of 16 edible taxa known and harvested by 
rural communities of the Northeastern Colombian Andes, of which 11 are ectomy-
corrhizal, nine of them belonging to the genus Ramaria, and one to each, Tylopilus 
and Russula.

Although around 1000 species of macrofungi have been described from Andean- 
Patagonian Nothofagus forest (Mueller et al. 2007), only few species are regularly 
collected and consumed by local populations. Among EEMF, Ramaria spp. named 
“changle” or “chandi” in Southern Chile and Argentina (Coña apud Moesbach 
1930; Sanchez-Jardón et al. 2017) are most commonly offered at local markets dur-
ing the season. Species, often sold in mixed collections, have been named as R. flava 
(Schaeff.) Quél., R. botrytis (Pers.) Bourdot, R. patagonica (Speg.) Corner, and 
R. subaurantiaca Corner, among others, in the literature (Singer 1969; Lazo 2016; 
Barroetaveña and Toledo 2016); however, taxonomy of the South American 
Ramariae requires revision as species concepts applied at present are poorly defined 
(Valenzuela 2003) and date back to publications from the 1950s and 1960s (Singer 
1969), lacking input of molecular and morphological data by advanced standards as 
proposed by Christan and Hahn (2005).

Autochthonous Boletes show low diversity in the Nothofagus region: a mere five 
species of Boletaceae are reasonably known so far from Southern Chile (Horak 
1977; Garrido 1988; Riquelme et al. 2019), of which only Boletus loyo Phillippi and 
B. loyita E. Horak are considered good EEMF and regularly collected; both species 
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are restricted to Mediterranean and temperate Nothofagus forests between the 
Pacific coast and the Andean foothills, from approximately 35° to 41° s.l.

B. loyo, named accordingly to its indigenous mapuzungún name “loyo” (Coña 
apud Moesbach 1930), resembles the king bolete Butyriboletus regius (Krombh.) 
D. Arora & J.L. Frank from the Northern hemisphere, but a comprehensive taxo-
nomic study in order to justify a reclassification of B. loyo at genus level is still 
pending. Loyo is a rare regionally endemic species, but due to the impressive size of 
its basidiomata, which can reach 40 cm in diameter, it is easily spotted in the forest 
and regularly sold at local markets between Valdivia and Concepción, Chile.

Another regionally frequent EEMF in Chilean Nothofagus forest is Cortinarius 
lebre Garrido. Its main area of distribution is along the coastal cordillera, approxi-
mately between 36° and 39° s.l. (Arnold et al. 2012; Garrido 1988), although iso-
lated records exist as far south as 44° s.l. (Salazar Vidal et al. 2020). A probable 
conspecificity with Cortinarius purpurellus M.M.  Moser, E.  Horak, Peintner & 
Vilgalys (syn.: Rozites violacea E. Horak), which was originally described from the 
Argentinian side of the Southern Andes (Moser and Horak 1975), remains to be 
verified. A specific and characteristic organoleptic attribute of fresh C. lebre is its 
strong and repugnant, naphthalene-like smell whose main component was identified 
as indol (Arnold et al. 2012) and which fades to a pleasant, perfume-like aroma dur-
ing cooking. A similar species from the same area, although less frequent than 
C. lebre and with colors and smell strikingly similar to C. camphoratus Fr. from the 
northern hemisphere, is C. contulmensis Garrido, according to Garrido (1988) 
locally collected by the peasants of the Nahuelbuta coastal mountain range. 
Although Cortinarius is by far the most diverse genus of ectomycorrhizal fungi in 
South American Nothofagus forests (Moser and Horak 1975; Nouhra et al. 2013), 
only a few other common species, such as C. magellanicus Speg., are consumed 
locally (Gamundí and Horak 1994; Barroetaveña and Toledo 2016; Sanchez-Jardón 
et  al. 2017). Cortinarius austroturmalis M.M.  Moser & E.  Horak; C. effundens 
M.M.  Moser, E.  Horak, & Singer; and a few other large-sized and gregarious 
Cortinarii described and gathered in the sect. Xiphidipus by Moser and Horak 
(1975) have been reported as edible and of good organoleptic quality by the same 
authors, but their culinary potential so far has been hardly appreciated, and there is 
yet no existing market for these attractive species although they are widely distrib-
uted. Salazar Vidal and Palfner (2015) calculated the seasonal yield of C. austrotur-
malis up to 7 kg fresh weight per ha for Nothofagus forest in the Maule region of 
Central Southern Chile.

At least two Amanita species, A. diemii Singer and A. merxmuelleri Garrido, 
have been traditionally collected and consumed in rural areas of Southern Chile 
(Salazar Vidal 2016a), but as adventitious toxic Amanitas, such as A. phalloides 
(Vaill. ex Fr.) Link and A. gemmata var. toxica Lazo, are becoming increasingly 
common in mixed woodlands where introduced trees, such as pines, oaks, or chest-
nuts are present (Valenzuela 1992), the harvest of Amanita spp. should nowadays be 
avoided due to the high risk of confusion and severe intoxication, especially for 
unexperienced mushroom gatherers.
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Chanterelles (Cantharellus and related genera) and milk caps (Lactarius), not 
only common EEMF on the northern hemisphere but also found in Colombian oak 
forests, are absent in Southern Nothofagus forests, and only allochthonous Lactarius 
sect. deliciosi can be found in pine plantations, which today cover large areas 
previously occupied by native forest (see next section).

16.3  Edible Ectomycorrhizal Mushrooms Associated 
to Exotic Timber Plantations

Across South America, allochthonous timber tree species have long been introduced 
and are still expanding as monocultures or, more critically, becoming naturalized 
and invading native vegetation (Langdon et al. 2010). Although Eucalyptus spp. are 
probably most important in this context, the most relevant hosts for non-native 
EEMF are Pinus spp., which nowadays are spread across all climate zones, from the 
tropics to the subantarctic steppe (García et al. 2018). Pinaceae in South America 
are typically found to be associated to few but highly host-specific, adventitious 
EEMF, such as Suillus spp. and Rhizopogon spp., among others (Hayward et  al. 
2015). These low-diversity communities homogenize and simplify the landscape 
across a vast latitudinal gradient, not only replacing native ectotrophic communities 
like Quercus and Nothofagus forests (Simijaca et al. 2018; Palfner and Casanova- 
Katny 2019) but also establishing invasive alien ectomycorrhizal guilds in previ-
ously anectotrophic areas (García et al. 2018).

Although historically, Suillus luteus (L.) Roussel is by far the most important and 
widely distributed commercial species (Barroetaveña and Toledo 2016; Melgarejo 
2014, 2015; Molares et al. 2020), less common species, such as S. granulatus (L.) 
Roussel and S. bellinii (Inzenga) Kuntze, are increasingly receiving attention by 
researchers and mushroom gatherers (Chung Guin-Po 2021; Niveiro et al. 2009).

After Suillus spp., Lactarius sect. deliciosi are the second most important EEMF 
retrieved from pine plantations in South America. The most commonly encountered 
milk cap was historically identified as L. deliciosus (L.) Gray (Mikola 1969) and 
reported from different countries (Singer 1969; Barroetaveña and Toledo 2016); 
however, more recent studies from Chile and Brazil (Chávez et al. 2015; Silva-Filho 
et  al. 2020), backed by molecular, morphological, and ecological data, yielded 
evidence that this taxon should be correctly named L. quieticolor Romagn. and is 
probably distributed throughout large parts of the continent.
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16.4  Putatively Mycorrhizal Edible Fungi: Morchella

Morchella ascomata are among the most demanded and high-prized edible mush-
rooms worldwide. Although there is still controversy about whether or which 
Morchella species are mycorrhizal or saprobiotic (Hobbie et al. 2017), we decided 
to include this genus in our review due to its extensive presence in South America 
and the evidently specific association of some species to ectotrophic forest.

Early mentions and descriptions of true morels from South America date from 
the late nineteenth and early twentieth centuries and were hence based on a eurocen-
tric and today obsolete taxonomic concept. The first records of Morchella from 
Southern Argentina were published by Spegazzini (1909) and named as M. conica 
Pers., based on collections from the Southeastern Andes; later, records under the 
same name from Central and Southern Chile (Spegazzini 1918, 1921) were added. 
Espinosa (1929) reported M. esculenta (L.) Pers. from a market in Santiago de 
Chile. A single finding of the supposedly endemic Morchella patagonica Speg. by 
Spegazzini (1909) for Argentina still remains unrepeated and unconfirmed. Gamundí 
(1975) reported Morchella elata from Patagonia as representing a species complex; 
the same author later also mentioned records of M. intermedia and M. semilibera 
(Gamundí 2010) from Argentina. Only recently, taxonomy and phylogeny of 
Morchella in South America have been substantially updated, mainly based on 
molecular markers (Baroni et al. 2018; Machuca et al. 2021), indicating that prob-
ably most species names had been incorrectly applied before. Confirmed and new 
taxa published for the region are supporting the concept of coexistence of endemic 
and widely distributed species, and this is for Patagonia: M. andinensis A. Machuca, 
M. Gerding, & D. Chávez; M. aysenina A. Machuca, M. Gerding, & D. Chávez; 
M. septimelata Kuo; and M. tridentina Bres. (Machuca et al. 2021; Pildain et al. 
2014) and for Ecuador, Perú, and Venezuela: M. gracilis and M. peruviana (Baroni 
et al. 2018). Furthermore, insufficiently identified Morchella spp. belonging to the 
“elata” and “esculenta” clades have also been reported from Bolivia (Melgarejo 
Estrada pers. com.).

A comprehensive treatise with up-to-date information about biology, diversity, 
ecology, and nutritional properties of Morchella spp. of the Patagonian Andes, 
together with guidelines for sustainable and environmentally friendly harvest as 
well as a market analysis, has recently been published by various authors (edited 
by Lobos and Icarte 2021).

16.5  Management and Culture of Native and Introduced 
Edible Ectomycorrhizal Fungi

16.5.1  Consumption and Trade Levels

As a common pattern, regionally endemic and/or infrequent species of EEMF are 
mostly collected, sold, and consumed in limited quantities and at a local scale, 
whereas widely distributed and/or frequent species tend to be commercialized 
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across larger regions or even internationally, as in the case of Morchella spp. or 
Suillus spp., in some regions by technically and logistically rather advanced trade 
chains. However, there is only little published and updated information about com-
mercial statistics of edible mushrooms in South America, especially of mycorrhizal 
species (Quiroz et al. 1996; Gysling et al. 2005; Albertó et al. 2010).

16.5.2  Mycosilviculture

Approaches toward sustaining, increasing, or diversifying production of EEMF in 
native forests or timber plantations are forming part of the concept of mycosilvicul-
ture (Savoie and Largeteau 2012; Wang and Chen 2014). Especially in managed, 
low-diversity, or degraded forest ecosystems, mycosilviculture can be an efficient 
tool for reinforcement or enrichment of mycorrhizal associations, with special focus 
on EEMF (Iwabuchi et al. 1994; Palma et al. 2021).

Mycosilvicultural methods aiming at increased productivity of EEMF are based 
on enrichment or boosting of natural production by inoculating compatible host 
trees in situ with spores or mycelium of selected species, previously produced under 
controlled conditions. In a study aiming at optimizing culture conditions for myce-
lial inoculum, Santelices et  al. (2012) found differences in growth rates of geo-
graphically distant Suillus luteus strains from central Southern Chile. Successful 
formation and high colonization rates of mycorrhizal roots formed by Pinus elliottii 
Engelm. inoculated with spores of fresh Suillus granulatus were reported from 
Argentina by Nouhra and Becerra (2001). Pereira et al. (2014) induced mycorrhiza 
formation in seedling roots of Pinus radiata inoculated with mycelium of Lactarius 
quieticolor isolated in central Southern Chile and produced under optimized condi-
tions in liquid medium. Also, inoculation trials of P. radiata with introduced Boletus 
edulis Bull. and B. pinicola (Vittad.) A. Venturi were reported for Chile by Chung 
et al. (2010); however, although formation of mycorrhizal roots could be observed 
in laboratory and nursery, no production of sporomata occurred.

A highly promising approach of enrichment of autochthonous EEMF in native 
Nothofagus forest by spore irrigation was recently realized by Palma et al. (2021) in 
Southern Chile, Valdivia Province: in a long-term collaboration project with a com-
munity of rural mushroom collectors and small land owners, spore inoculum of 
Boletus loyo and Ramaria spp. was brought out in previously monitored and pre-
pared forest patches, accompanied by an information and training campaign for 
environmentally friendly EEMF harvest and adequate habitat management. During 
three consecutive years after spore irrigation treatment (2020–2022), at least one of 
the experimental sites showed continuously increasing production of Ramaria flava 
(changle) (Fig. 16.1), whereas the land owners reported that before the treatment, 
they had yielded very little or no harvest of this species from the same site. Although 
the results are still under evaluation, they provide important evidence that mycosil-
vicultural techniques can be powerful tools for sustainable use of native fungal 
resources and Nothofagus forest by local communities.

16 Edible Ectomycorrhizal Mushrooms in South America



328

Fig. 16.1 Growth and harvest of edible Ramaria cf. flava basidiomata (lower photo showing 
EEMF gatherer  Rosario Catripan Lincocheo from Caricuicui)  in privately owned managed 
Nothofagus forest in Southern Chile (Valdivia Province) during May 2022, 3 years after spore 
irrigation treatment. Photo credit: Rodrigo Sagardía Parga, INFOR Valdivia
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16.5.3  Truffle Culture in South America

Culture methods for Tuber spp., mainly for T. melanosporum Vittad. from 
Mediterranean Europe, were introduced in South America from around 2000 
onward. Due to the Mediterranean to temperate climate required by T. melanospo-
rum and other species of interest, like T. borchii Vittad. and T. magnatum Picco, 
Southern Chile and Argentina so far have proven to be the most adequate countries 
for truffle culture on the continent (Micofora 2018). First experimental assays with 
T. melanosporum were successfully performed and documented in Central Southern 
Chile by academic research teams (Pérez et al. 2007; Pereira et al. 2013). Results 
and perspectives of the attempts to introduce Tuber magnatum in truffle orchards in 
Chile have been recently summarized by Pereira et al. (2021). At present, private 
entrepreneurs provide a growing number of interested land owners with mycorrhi-
zal tree seedlings inoculated in vitro, mainly with T. melanosporum, and, along with 
guilds of truffle growers, also offer technical guidance for successful management 
of truffle orchards in both countries (www.atchile.cl, www.trufasdelsur.com); har-
vests, as far as being documented in public media, have reached profitable levels 
within a few years (Micofora 2016). An interesting aspect of sustainable mycosilvi-
culture has been the successful in  vitro synthesis of ectomycorrhizas between 
Nothofagus obliqua and Tuber melanosporum (Pérez et al. 2007), which could open 
a new perspective for combining conservation and reforestation of native Fagales 
trees with truffle production, reducing the need of planting allochthonous host trees 
like Quercus or Corylus.

16.6  Mycogastronomy and Cultural Importance

During recent years, a rising interest in promoting wild mushrooms as part of local 
or regional gastronomy can be observed in various regions in South America, but 
scientific studies about this issue are still scarce. Fernández et al. (2021) recently 
published the results of an interview campaign performed with local chefs from the 
Cordillera de Chubut, Argentinian Patagonia, reporting EEFM being commonly 
offered in restaurants but only a low variety of species, led by introduced Suillus 
luteus and morels, whereas other, especially native fungi, only play a marginal role, 
mainly due to irregular and unpredictable supply as well as lack of knowledge about 
species or problems with their identification.

S. luteus is a neophyte in many regions of South America and, as mentioned 
above, even grows adventitiously in areas where no native EEMF existed before. Its 
harvest can therefore be an opportunity for local peasants to diversify crop sales and 
yield additional income, as has been shown for rural communities in Bolivia by 
Melgarejo Estrada et al. (2018). In central Chile, there exists even a traditional fair 
since 1988  in the village of Empedrado, dedicated to activities around S. luteus, 
called “Festival de la Callampa.”
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Also in Chile, festivals or fairs held around native EEMF can be seen to be 
spreading along an increasing number of villages and urban areas: The “Changle” 
(Ramaria) Festival takes place in the town of Cañete every year since 2012, featur-
ing cooking workshops by well-known national chefs, artistic shows, a mycological 
tour known as the “Changle Route,” contests, gastronomy, and handicraft sales. In 
the town of Paillaco, located near the city of Valdivia, the Wild Mushroom Festival 
created in 2014 is organized during the month of April where dishes based on mush-
rooms, such as changle, loyo, lebre, among others, can be tasted, in addition to other 
activities linked to mushrooms. The Morel Festival has been held since 2015, in 
December, in Villa Ortega, located near the city of Coyhaique in Chilean Patagonia, 
which not only promotes sustainable harvesting of Morchella but also intends to 
raise awareness to increasing threats such as intentional burning of native forest and 
overexploitation. In this festival, art is presented together with dishes based on this 
gourmet edible mushroom. Another example is the “FungiFest” mushroom festival 
held in Valdivia since 2016, with scientific and popular talks on mushrooms, handi-
craft sales, photography, and cooking contests, highlighting characteristics and uses 
of a large number of species for a broad public.

For Argentina, Barroetaveña and Toledo (2016) mention high diversity of EEMF 
associated with Nothofagaceae in western Patagonia, some of which are little known 
and, therefore, not collected by the local and regional population; accordingly, the 
authors seek to promote the sustainable collection and consumption of these mush-
rooms as a novel non-timber forest product. In Chubut, wild edible and cultivated 
mushrooms have been incorporated into a gastronomic circuit called “Patagonia 
Fungi, trails and flavors,” co-organized by public and private entities and based on 
experiences in foreign countries, mainly European, which promotes mycogastron-
omy and mycotourism. Activities include courses and workshops for collectors, fla-
vor tastings with chefs from the region, gastronomic fairs, joint organization of 
tasting dinners of novel mushrooms, and the production of preserves and gourmet 
products (Fernández et al. 2021).

16.7  Nutritional Chemistry and Biological Activity

Edible wild mushrooms have been part of the human diet for centuries due to their 
attractive nutritional and organoleptic characteristics, such as flavor, texture, and 
aroma (Aisala et al. 2020). From a nutritional point of view, mushrooms are low in 
lipids but present high content in proteins, carbohydrates, fiber, vitamins, and min-
erals (Cheung 2010; Valverde et  al. 2015). In addition to being recognized as a 
nutritious food, certain mushrooms are also an important source of biologically 
active compounds with medicinal potential, including phenolic compounds, poly-
saccharides, sterols, and triterpenes, among others (Wasser 2010).

Most chemical analyses of EEMF have been performed with species from the 
northern hemisphere, only some of which are adventitious in South America (Kalač 
2013). For example, Ribeiro et al. (2009) characterized the lipid profile of European 
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species, such as Amanita rubescens Pers., Suillus bellinii, S. granulatus, and S. luteus, 
which are also adventitious in South America (Valenzuela et al. 1998; Niveiro et al. 
2009; Chung Guin-Po 2021). However, chemical and organoleptic analyses are gen-
erally still scarce for South American EEMF, especially for native and endemic spe-
cies: High carbohydrate content and low fat/protein ratio was determined for Boletus 
loyo mushrooms from Chile by Schmeda-Hirschmann et al. (1999), as well as for 
Cortinarius magellanicus and Ramaria patagonica from Argentinian Patagonia by 
Toledo et al. (2016); in the latter study, the authors also detected high content of 
tocopherol in C. magellanicus, whereas R. patagonica stood out by its high antioxi-
dant activity and phenol content. Barroetaveña et  al. (2020) expose in detail the 
nutritional composition of common EEMF from Nothofagus forests as well as from 
pine plantations. Jacinto-Azevedo et  al. (2021) provide not only nutritional data 
(moisture, protein, fat, ash, and carbohydrate content) but also biological activity 
(antibacterial, antifungal, and antioxidant) for four EEMF native to Chile and 
Argentina: Boletus loyo, Cortinarius lebre, Ramaria flava, and R. subaurantiaca, 
among which R. flava stands out by its high antioxidant activity.

16.8  Outlook: Global Change and Conservation Strategies

Following a worldwide tendency, changes in climate and soil use are putting increasing 
strain on many natural habitats of EEMF in South America. The most important 
factors, which negatively affect mycorrhizal trees and associated fungi in the region, 
are disturbance and deforestation of native woodlands as well as overharvesting of 
wild mushrooms in the remaining forests. Conservation measures for EEMF should 
include individual fungal species as well as their tree hosts and specific habitats. 
Protection should be implemented not only by improving environmental laws but 
also by recommendations for good practice and sustainable harvesting, made avail-
able to mushroom collectors. In Chile, the conservation status of fungi is classified 
according to IUCN criteria since 2012 by the Ministry of Environment, based on an 
annual public call for suggestions of species. To date, distribution and vulnerability 
of the important EEMF Boletus loyo (classified as endangered “EN”) and Cortinarius 
lebre (classified as vulnerable “VU”) have been assessed (MMA 2022). A proposal 
of classification of the respective ecosystems and phytosociological units by IUCN 
criteria has been published (Pliscoff 2015) but is awaiting legal status. However, 
protocols and recommendations for sustainable harvesting are being issued by gov-
ernmental and scientific institutions as well as by NGOs (Salazar Vidal 2016b; 
Palma et al. 2021).

On the other hand, local invasion of native forest by ectomycorrhizal fungi, 
which were originally introduced with allochthonous timber trees but changed to 
autochthonous tree hosts, has been observed. For the special case of EEMF, there is 
the example of Amanita rubescens in Southern Chile, which, being locally adventi-
tious in Monterrey Pine plantations, has also been reported from pure Nothofagus 
forest in the coastal mountains near Valdivia (Valenzuela et al. 1998).
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Sustainable harvest of EEMF, especially in native forests, should be based on 
protection of fungal species (selective and careful extraction of sporomata, mini-
mally intrusive treatment of substrate and mycelia) but also of the habitat (host 
trees, understory, water courses); in managed forests, grazing livestock should be 
excluded; on the other hand, pruning and selective cutting of trees may be consid-
ered in order to maintain canopy cover and tree density adequate for the respective 
EEMF taxa (Palma et al. 2021).

There is evidence that at least some of these good practices have been applied 
and passed on since ancient times by indigenous and rural communities, for exam-
ple, in Southern Chile and Argentina; these often local experiences should be con-
sidered as a baseline for the development of regional, socially acceptable collector’s 
guidelines and conservation frameworks for EEMF in South America (Tacón et al. 
2006; Alvarado-Castillo and Benítez 2009; Toledo et al. 2014).

Finally, as outlined by Pérez-Moreno et al. (2021), sustainable use and manage-
ment of EEMF based on local and regional cultures and traditions can have multiple 
positive effects on economy, ecology, and social structure, especially on a highly 
diverse continent like South America.
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17.1  Introduction

Grasslands, which cover about 23% of terrestrial ecosystems, provide numerous 
ecosystem services, such as water infiltration and storage, soil erosion control, wild-
life habitat biodiversity, and carbon sequestration, and help to mitigate global warm-
ing (Suttie et al. 2005; Rangelands Atlas 2021). However, grasslands are ecosystems 
seriously threatened by agriculture, livestock, and forestry and have been among the 
most degraded ecosystems worldwide over the last 50 years, with a decline in eco-
system functioning and services (McSherry and Ritchie 2013; Conant et al. 2017).

In temperate zones, grasslands also provide most of the forage for ruminant 
nutrition (Hopkins and Wilkins 2006; Muir et al. 2011), and since their soils rarely 
provide ideal conditions for plant growth, they maintain an acceptable forage pro-
duction. In South America, these temperate ecosystems are known as the Río de la 
Plata Grasslands and are among the most important in the world, with an area of 
760,000 km2. These occupy a large part of central Argentina, almost all Uruguay, 
and part of the state of Río Grande do Sul, in Brazil. Also known as the “Pampas” 
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or “Campos,” these regions have been the base of the economy of commodity- 
exporting countries such as Argentina, Brazil, and Uruguay. In particular, the 
Flooding Pampa (90,000 km2) represents the largest area of remnant natural or sem-
inatural grasslands in the temperate-humid Pampa region of Argentina and in South 
America (Soriano et al. 1991; García et al. 2018). In this area, agricultural develop-
ment is limited on edaphic and climatic factors, and thus livestock production 
depends mainly on natural grasslands (Soriano et  al. 1991). The productivity of 
these grassland communities is strongly affected by the topography, which deter-
mines a range of salinity, alkalinity, excess or deficit of water in the soil, and low 
nutrient availability, which, together with the climate, decreases plant growth 
(Escudero and Mendoza 2005; García and Mendoza 2008). The land use and/or 
environmental conditions in these grasslands have led to the dominance of perennial 
and annual C3 and C4 grasses associated with a decline or absence of native legumes, 
a fact that seriously affects the forage quality and productivity in this area (Cahuépé 
2004; Perelman et al. 2001; Burkart et al. 2005).

Some of the alternatives to improve both the quantity and quality of the forage 
production when undesirable factors affect productivity include irrigation; addition 
of herbicides, fertilizers, or seeds of forage plants; and the control of the stocking 
rate (Muir et al. 2011). One of the most deficient nutrients of the temperate grass-
land soils worldwide is phosphorus (P). This deficiency is also one of the main 
limiting factors for forage production in the Argentine Pampas. Thus, one of the 
practices commonly used to increase productivity in these grasslands is the addition 
of P (Rubio et al. 2012; Mendoza et al. 2016a). Other feasible strategies to increase 
forage production include selecting plant species adapted to grow under P-deficient 
conditions (Cavagnaro et al. 2014; Chippano et al. 2020) and taking advantage of 
the benefits provided by native soil microorganisms involved in P nutrition, such as 
arbuscular mycorrhizal (AM) fungi (Mendoza and Pagani 1997; Cavagnaro et al. 
2014; Ikoyi et al. 2018; Chippano et al. 2021).

Approximately 80% of all land plant species form symbiotic associations with 
AM fungi (Smith and Read 2008; Tedersoo et al. 2020). In these symbiotic associa-
tions, plants colonized by AM fungi obtain nutrients, and in return, AM fungi 
receive photosynthates from the plant (Smith and Read 2008). In grasslands, AM 
fungi play an important ecological role in shaping plant communities, by influenc-
ing plant growth and nutrient uptake (especially that of P), plant diversity, and com-
petitive ability (van der Heijden et al. 2006; Klironomos et al. 2011; Klabi et al. 
2014). On the other hand, AM fungal communities are affected by the changes in 
the plant community and environmental factors (Eom et al. 2001; van der Heijden 
et al. 2006; Klironomos et al. 2011). In addition, in the Pampas grasslands, both 
plant communities and AM fungal communities are modified by the raising of live-
stock and the addition of P fertilizers to increase the forage resource. Thus, the 
benefits of AM fungi on both plant development and the whole grassland ecosystem 
are affected as well. In this sense, AM fungi improve the grazing tolerance of their 
host plants, although it has also been suggested that AM fungi may place an addi-
tional burden on the plant, depending on the intensity and frequency of grazing and 
the level of nutrients in the soil (Barto et al. 2010). In particular, both grazing and 
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defoliation have been shown to decrease AM fungal colonization in grasslands and 
in grassland species grown under controlled conditions (Gehring and Whitham 
1994; Frank et al. 2003; Saravesi et al. 2014). This negative effect of defoliation on 
AM colonization has usually been ascribed to a reduced photosynthetic capacity of 
plants, which, in turn, limits the carbon supply to roots and AM fungi, particularly 
under heavy grazing conditions (Barto et al. 2010; van der Heyde et al. 2017, 2019; 
Faghihinia et al. 2020; Yang et al. 2020). However, grazing has also been shown to 
increase or have no influence on AM fungal colonization (Eom et al. 2001; Hokka 
et  al. 2004; Yang et  al. 2013). The context-dependent nature of the mycorrhizal 
symbiosis association suggests that the effects of grazing or defoliation on AM 
fungi occur through changes in the soil and root environment in which AM fungi are 
found. The different responses of AM fungi and their hosts during defoliation could 
also be associated with variations in plant genotype, climatic factors, soil available 
nutrients (P and N), and/or differences in the relative growth rates of roots and 
hyphae of AM fungi inside roots and in the surrounding soil (Barto and Rillig 2010; 
van der Heyde et al. 2017, 2019; Faghihinia et al. 2020).

Regarding fertilization, in most P-deficient grassland soils, P fertilization is nec-
essary to obtain maximum forage yield (Muir et al. 2011; Mendoza et al. 2016a; 
Chippano et al. 2020). However, when P availability in the soil increases due to 
fertilization, both AM root colonization and mycorrhizal response decrease in sev-
eral forage plant species, even if AM fungi can still be actively contributing to plant 
P uptake (Smith et al. 2004; Jeffery et al. 2018; Chippano et al. 2021). Furthermore, 
it has been reported that application of high levels of fertilizers induces a decline of 
the AM fungal community (Mäder et al. 2000; Kahiluoto et al. 2001; Fornara et al. 
2020). Compared with agricultural crops, little is known about the effect of grazing/
defoliation or P fertilization on the symbiosis between forage species and AM fun-
gal communities from soils of the grassland Pampas.

This chapter discusses the ecological role of AM symbiosis on the functioning of 
the temperate grasslands of Argentina, as valuable information to promote better 
management of forage land sustainably while increasing forage production and pre-
serving the beneficial effects of AM fungal communities in these ecosystems. We 
focus mainly on the effects of grazing/defoliation and P fertilization on the mycor-
rhizal status and AM benefits on forage species growing on grassland soils of the 
Argentine Flooding Pampa.

17.2  Natural Habitat

The mutualism between plants and AM fungi is an essential component of temper-
ate grassland communities. The beneficial effects of AM fungal communities on 
their plant hosts and the occurrence and abundance of AM fungi are affected by 
multiple soil parameters, including soil pH (Fitzsimons et al. 2008; Oehl et al. 2017; 
Van Geel et al. 2018), P availability (Gosling et al. 2013; Camenzind et al. 2014), N 
level (Camenzind et al. 2014; Fitzsimons et al. 2008; Van Geel et al. 2018), salinity, 
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soil disturbance, vegetation, and soil hydrological conditions (Miller and Bever 
1999; Ingham and Wilson 1999; Escudero and Mendoza 2005; García and Mendoza 
2007, 2008; García et al. 2017; Fusconi and Mucciarelli 2018).

Despite the importance of AM fungi in the physiology and nutrition of grassland 
plants, the study of the dynamics of AM fungal communities and the possible role 
of this fungal group in the modeling of the ecosystem remains a challenge due to the 
high degree of connection between the different root systems, the wide range of host 
plants involved in the AM symbiosis and the formation of a common hyphal net-
work that connects root systems of plants within the same or different species. The 
hyphal network may mediate the plant interaction by the inter- and intraspecific 
transfer of assimilates (Smith and Read 2008; Tedersoo et al. 2020), although the 
ecological relevance of this mechanism is not fully elucidated.

The grasslands of the Argentine Flooding Pampa are subject to periodic droughts 
or floods, and their soils show extreme values of salinity and sodicity. These stress 
conditions represent a particular situation to study the effect of seasonal variation on 
AM fungal populations and to understand seasonal patterns of AM colonization 
morphology and their relationship with plant nutrient demands and soil properties 
and then forage quality. In this sense, in a 2-year field study, Escudero and Mendoza 
(2005) analyzed the seasonal variation in AM populations in four grassland sites of 
the Flooding Pampa, which varied widely in their soil conditions, vegetation com-
position, and period over which the soils were subject to flooding. These authors 
found high values of spore density even when the period over which the soil was 
subject to flooding ranged from 8% to 60% of the year. The spore density also 
showed a seasonal pattern, with highest values in summer, lowest values in winter, 
and intermediate values in autumn and spring, and these changes appeared to be 
controlled mainly by the succession of dry and wet periods. They also observed that, 
in the four grassland sites, the spore communities were dominated by two species of 
AM fungi, Rhizophagus fasciculatum and R. intraradices, and that the spore density 
of these species was relatively more abundant in summer than in winter, when 
flooding is most frequent in the Flooding Pampa. These authors also found that the 
mean value of spore density varied fivefold among soil sites, from 305 per gram of 
dry soil in the nutritionally well balanced soil to 68 per gram of dry soil in the clay 
and extremely P-deficient soil (1.38  mg P kg−1) (Escudero and Mendoza 2005). 
Besides, in agreement with that reported by Abbott and Robson (1991), who 
observed that, in field soils, spore density appears to reach a maximum when P 
availability in the soil is less than that required for maximum shoot growth and then 
decreases with increasing P availability, Escudero and Mendoza (2005) reported 
that P availability in the soil (1.38–10.93  mg P kg−1) was always less than that 
required for maximum plant growth. In these P-deficient soils, an increase in P level 
could increase spore count before the expected decrease occurs. In addition, the P 
required to reach maximum plant growth generally differs between soils, a fact that 
could explain the lack of direct relationship found by the authors between soil P and 
AM fungi measurements. Finally, Escudero and Mendoza (2005) found that the soil 
pH had an effect on spore density similar to that of P level. They concluded that the 
spore density of each soil site is a consequence of the influence of many plant 
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community and soil variables on the AM fungal communities rather than of the 
influence of one specific dominant plant species or soil property (Escudero and 
Mendoza 2005). Since AM fungal communities may be adapted to different soil 
conditions, it is not surprising that the abovementioned authors did not find neither 
a marked trend nor a limiting value for soil pH, exchangeable Na or P availability to 
increase or decrease spore density. In the Flooding Pampa grasslands, sporulation of 
AM fungi depends on the season, and this seasonality is an expression of AM fungi 
to survive when the environmental conditions in the soil are unfavorable.

Following the studies in natural grasslands from the Flooding Pampas, our 
research group studied the temporal dynamics of AM fungal root colonization in 
legume and grasses, propagules in the soil, plant tissue nutrients (N and P), and soil 
properties, along a topographic slope ranging from saline and/or sodic lowlands of 
high soil moisture content and soil pH to uplands of drier and neutral non-saline 
soils (pH  6.6–9.5; EC 0.9–0.1 dSm−1; exchangeable Na 28–77%) (García and 
Mendoza 2007, 2008). The plant species selected were the legume Lotus tenuis and 
the grasses Distichlis spicata, Paspalum vaginatum, and Stenotaphrum secundatum. 
The results of these studies showed that the Arum-type colonization predominated 
in L. tenuis roots and that the co-occurrence of Arum and Paris-type colonization 
predominated in grass roots in all the grassland sites studied. The overall mean val-
ues of AM root colonization over sites and seasons were 89% for L. tenuis and 68% 
for grasses. The capability of plants to be densely colonized by AM fungi is an 
important fact in plant nutrition and stress tolerance because it means that the AM 
fungi-plant symbioses can persist in roots under a wide range of soil moisture satu-
ration levels, nutrient status, salinity, and sodicity in space and time (García and 
Mendoza 2007, 2008).

Our results also showed that the dynamics of the morphology of AM root colo-
nization presented similar patterns in all the plants studied (García and Mendoza 
2007, 2008). Maximum arbuscular colonization occurred at the beginning of the 
growing season in late winter, with a minimum in late summer, whereas maximum 
vesicular colonization occurred in summer, with a minimum in winter. This could 
indicate the preferential production of a morphological structure by the fungus in a 
specific season. The highest arbuscular colonization was associated with the highest 
N and P levels in plant tissue, suggesting a relationship between increases in the rate 
of nutrient transfer and symbiosis partners. Soil water content, salinity, and sodicity 
were positively associated with AM root colonization and arbuscular colonization 
in L. tenuis but negatively associated with AM root colonization and arbuscular 
colonization in the grasses (García and Mendoza 2007, 2008). Besides, number of 
entry points per millimeter of colonized root increased in spring for all species and 
was higher in the roots of the legume than in the roots of the grasses, showing dif-
ferences in the affinity for AM fungi between both species. Since soil properties and 
plant communities along the topographic slope are characteristic of each site, if 
legume and grasses present similar seasonal dynamics in the number of entry points 
in all the sites analyzed, it suggests that each AM fungal community is adapted to 
the particular soil conditions of each site and then responds seasonally in relation to 

17 Arbuscular Mycorrhizal Symbiosis in Temperate Grassland Forage Species…



344

the growth stages and nutritional demands of the plant host (García and Mendoza 
2007; García 2008).

As mentioned above, several researchers have shown that AM fungal communi-
ties of temperate grasslands can be affected by agronomic management practices, 
such as fertilization and/or the use of herbicides, including glyphosate (Menéndez 
et al. 2001; Druille et al. 2015; Cofré et al. 2017). In grasslands of the Flooding 
Pampa, P fertilization and glyphosate application are frequently used to increase 
forage production. In relation to herbicide application, greenhouse and field experi-
ments have demonstrated that glyphosate application reduces AM fungi spore via-
bility in the soils of these grasslands and subsequently the mycorrhizal colonization 
of plants (Druille et  al. 2013, 2017). The results of these experiments showed a 
larger reduction in spore viability even when a dose that damaged but did not kill 
Lolium multiflorum plants (sub-lethal dose) was used, which demonstrates that eco-
system components may have different vulnerability to glyphosate. In recent years, 
farmers in the Flooding Pampa grasslands have adopted the promotion of L. tenuis 
through glyphosate application, due to the important contribution of this species to 
forage quantity and quality. In a field study performed by our research group, we 
found an AM fungal community in the rhizosphere of L. tenuis in natural grasslands 
and in that of L. tenuis promotion with glyphosate application (García et al. 2017). 
The soil sites studied presented different levels of salinity and sodicity, and those 
with glyphosate-mediated promotion presented an increased relative frequency of 
L. tenuis. Our results also showed that AM root colonization was higher in natural 
grasslands than in sites with L. tenuis promotion and that this colonization corre-
lated positively with pH and exchangeable Na (salinity and sodicity) in grasslands 
and negatively in sites with L. tenuis promotion. In this regard, Druille et al. (2015) 
reported that the AM fungal community could be less infective in sites with L. tenuis 
promotion than in natural grasslands. The concomitant loss of plant diversity 
induced by the herbicide application can also affect AM fungal communities. Our 
studies showed that the proportion of roots colonized by arbuscules in L. tenuis 
plants was high and similar between the different soil management conditions 
(García et  al. 2017). These results suggest that L. tenuis plants are functionally 
mycorrhizal for a diversity of soil conditions and/or managements (García et  al. 
2017). In this field study, AM fungal species were grouped into seven families, four 
of which presented the highest spore density: Glomeraceae, Claroideoglomeraceae, 
Acaulosporaceae, and Diversisporaceae. Spore values at the family level, soil prop-
erties, and L. tenuis relative frequency showed that Claroideoglomeraceae spores 
were associated with an increase in pH and exchangeable Na and a decrease in 
L. tenuis frequency (saline/sodic soils in natural grasslands) (García et al. 2017). 
The spores from Acaulosporaceae and Glomeraceae were associated with high 
L. tenuis frequency and a decrease in pH and exchangeable Na (non-saline/non- 
sodic soils in sites with L. tenuis promotion). Finally, the Diversisporaceae was 
associated with non-saline/sodic soils (in sites with L. tenuis promotion). We con-
cluded that AM fungal families and root colonization are good indicators to differ-
entiate sites by their soil characteristics (pH and exchangeable Na) and/or 
management conditions (e.g., herbicide application) (García et al. 2017).
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17.3  Grazing, Fertilization, and Plant-Plant Interactions

Grazing or defoliation and fertilization lead to changes in the soil conditions and 
thus to alterations in the plant community structure. Hence, the cause-and-effect 
relationships between plant nutrient status and AM fungal communities are difficult 
to attribute primarily to soil or host–plant characteristics. Excessive grazing of 
grasslands causes not only loss of plant biodiversity but also a decline in ecosystem 
functioning and services such as those provided by AM fungal communities 
(Faghihinia et al. 2020). In this sense, previous reports have shown different AM 
colonization responses in the roots of forage plants subject to grazing or defoliation 
in temperate Argentine grassland soils (Grigera and Oesterheld 2004; García and 
Mendoza 2012; Mendoza and García 2019; Chippano and García 2021b; Cavagnaro 
et al. 2021; García 2021).

In particular, Grigera and Oesterheld (2004) described AM colonization patterns 
in contrasting grazing situations (exclosure and continuous grazing) of plant com-
munity level as a whole and of Paspalum dilatatum, a dominant species, in a 
Flooding Pampa grassland. At the community level, these authors found higher total 
colonization in the grazed area than in the exclosure. In contrast, P. dilatatum roots 
showed higher total colonization and higher proportion of vesicles and arbuscules 
in the exclosure than in the grazed area. Animal selectivity on this highly palatable 
grass could determine higher grazing pressure compared with plant community on 
average. This not only contributes to explaining the controversial result of AM colo-
nization percentage at the two levels (community and individual plant) but also 
emphasizes the possibility that the mineral nutrition and growth of palatable species 
are more affected by grazing through its effect on AM colonization (Grigera and 
Oesterheld 2004).

In a recent study, the impact of defoliation on the relationship between native 
AM fungal communities and forage species of the Flooding Pampa was investigated 
under controlled conditions (García 2021). In this study, L. tenuis and Schedonorus 
arundinaceus co-culture was exposed to defoliation frequency plus water stress in a 
saline-sodic soil (García 2021). The results showed that defoliation frequency 
increased AM colonization in L. tenuis roots under both well-watered and water- 
deficit conditions. This may be a consequence of increased nutrient demand simul-
taneously with a decrease in root biomass of defoliated plants. In contrast, the AM 
colonization in L. tenuis roots was affected by the defoliation plus water excess 
treatment, where the combination of stresses seemed to be the most stressful sce-
nario for L. tenuis growth. On the other hand, AM colonization in S. arundinaceus 
roots under water stress and defoliation was minimal, and similar quantities of root 
biomass were observed in the three water treatments evaluated. These results are in 
accordance with those of Barto and Rilling (2010), who found similar results and 
proposed that root biomass resilience to defoliation may explain the lack of effect 
on AM colonization of grasses.

Regarding defoliation intensity, we found that it changes AM colonization 
dynamics in L. tenuis roots (García and Mendoza 2012). Results showed that 
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vesicular colonization decreased from 19% to 5% for non-defoliated plants to 100% 
for defoliated plants, respectively, indicating a remobilization of nutrient reserves to 
support shoot regrowth after defoliation. The high proportion of arbuscular coloni-
zation found (ranging from 66% to 77%) suggests that L. tenuis plants and AM 
fungi may establish a functional symbiosis even under intense defoliation in a 
saline-sodic soil (García and Mendoza 2012). These results are in line with those of 
Cavagnaro et al. (2021), who found that high defoliation intensity (60% of removed 
shoot biomass) also decreased vesicular colonization and did not affect arbuscular 
colonization in Agropyron elongatum roots. In our study, we also found that the 
external hyphal network increased from 10.4 m.g−1 dry soil in non-defoliated plants 
to 14.3 m.g−1 dry soil in 100% defoliated plants. This increase would contribute to 
compensating for the losses of root absorptive area in defoliated plants. Then, the 
strategy of the AM fungal symbiont consists in investing most of the C resources to 
preferentially retain arbuscular colonization as well as inoculum density in the soil 
(García and Mendoza 2012).

In relation to the functionality of the AM symbiosis, in other recent studies, we 
found that a high defoliation intensity (~75% removed shoot biomass) of L. tenuis 
plants decreased the mycorrhizal growth response under P-deficient conditions 
(Mendoza and García 2019; Chippano and García 2021b). This could be partly 
explained by the C limitation hypothesis, which predicts that defoliation should 
decrease C availability for AM fungi, reducing fungal colonization and mycorrhizal 
benefits in some situations (van der Heyde et al. 2019). Carbon resources of mycor-
rhizal and high-intensity-defoliated plants are invested to support regrowth and 
maintain AM symbiosis, showing a net decrease in regrowing shoot tissue com-
pared to non-mycorrhizal plants (Mendoza and García 2019; Chippano and García 
2021b). The lack of C is also reflected in a lower relative growth rate of mycorrhizal 
than non-mycorrhizal plants (Chippano and García 2021b). Therefore, mycorrhizal 
and defoliated L. tenuis plants are not able to compensate shoot biomass production 
(Mendoza and García 2019; Chippano and García 2021b). In both studies, the AM 
fungi could be considered a burden for plant growth due to the drainage of C com-
pounds in a P-deficient soil. Regarding this issue, Cavagnaro et al. (2021) reported 
discrepant defoliation effects (60% of shoot removed) on plant regrowth of grass 
forage species related to P supply under P-deficient conditions. These authors found 
that AM fungi increased the relative growth rate of defoliated Agropyron elongatum 
(C3 grass) grown under low P supply. In contrast, the effects of defoliation on plant 
regrowth in Bachiaria brizantha (C4 grass) were independent of AM fungi at any P 
supply. These results indicate that, even under intense carbon stress, the benefits of 
AM association exceeded the costs at low P supply and promoted plant regrowth 
after defoliation (Cavagnaro et al. 2021). In conclusion, the AM symbiosis in defoli-
ated plants is highly context-dependent and varies with growth and P mycorrhizal 
response of the forage species.

Several authors agree that, in the Flooding Pampa grasslands, P more than N is 
the main deficient nutrient for plant growth that limits the quantity and quality of 
forage production (Ginzo et al. 1986; Lavado et al. 1993; Rubio et al. 2012). The 
main agronomic practices utilized to increase forage production in temperate 
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grassland soils are P fertilization and the selection of plant species adapted to grow 
in P-deficient soils (Mendoza and Pagani 1997; Muir et al. 2011; Mendoza et al. 
2016a, b; Chippano et al. 2020, 2021). However, the increase in soil P availability 
because of P fertilization decreases the AM root colonization of forage species 
because P affects soil mycorrhizal infectivity through the inhibition of spore germi-
nation and a decrease in edaphic hyphal development, which result in a low ability 
of AM fungi to colonize plants (Covacevich et al. 2006; Gryndler et al. 2006). In 
addition, it has been suggested that the increase in P concentration within plants 
increases the resistance to penetration of the root by AM fungi, contributing to a 
decrease in the AM colonization percentage (Mendoza and Pagani 1997). In a previ-
ous study, we found that AM colonization in the roots of a legume and C3 and C4 
grasses was related to root P concentration under increasing P availability in the soil 
(Chippano et al. 2020).

In temperate grasslands of Argentina, the doses of P fertilizer usually applied to 
increase forage production are in the range of 100–200 kg triple superphosphate 
(TSP) ha−1 (Ginzo et al. 1982; Bailleres and Pirodi 2000). Although these doses are 
lower than those applied in countries with greater economic resources, little is 
known about the effect of increasing the soil P availability on the functionality of 
the symbiosis between the native AM fungal communities and forage species. 
Another effective and inexpensive management option to improve the quantity and/
or quality of grasslands in the Flooding Pampa is mixing grasses with legumes. In a 
field study performed by our research group, the biomass production of L. tenuis 
and S. arundinaceus co-culture increased, and AM colonization decreased in both 
plant roots under the application of 90 kg TSP ha−1 (Mendoza et al. 2016a). However, 
S. arundinaceus roots were much more extensively colonized by AM fungal com-
munities when grown with L. tenuis in co-culture than when grown in monoculture 
without P addition (soil P availability: 12 mg P kg−1) (Mendoza et al. 2016a).

Several studies have demonstrated that the inoculation with AM fungi has better 
effects on the plant growth and P acquisition of legumes than on those of C3 and C4 
grasses under P-deficient conditions (Tawaraya 2003; Tran et al. 2019). In particu-
lar, our studies have shown that L. tenuis presents higher AM root colonization than 
S. arundinaceus (C3 grass) and Panicum coloratum (C4 grass) despite P fertilization 
(Mendoza et al. 2016a, b; Chippano et al. 2020, 2021). In line with that reported by 
Mendoza and Pagani (1997), in a recent study, we observed that AM colonization in 
L. tenuis roots increased at low P supply (5–20 mg P kg−1), which allowed a soil P 
availability of 6.1–12.7  mg P kg−1 in a markedly P-deficient soil (available P: 
4.20 mg P kg−1) (Chippano et  al. 2020). This implies that the low P availability 
limited AM colonization and that small additions of P can improve colonization 
levels in L. tenuis roots. Selecting an optimum P dose may stimulate the potential 
activity of native AM fungi in the soil and increase P-acquisition efficiency in sev-
eral pasture and agricultural crops (Gosling et al. 2013). Our results in L. tenuis 
have shown that it is possible to increase forage yield (80–90% maximum growth 
rate) and maintain high values of AM colonization (near 70%) simultaneously with 
low to moderate P fertilization (30–60 mg kg−1), which corresponds to 10–20 mg P 
kg−1 available (Chippano et  al. 2020). Regarding the C3 and C4 grasses studied 
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(S. arundinaceus and P. coloratum, respectively), it was difficult to obtain high for-
age yield with the concomitant maintenance of AM root colonization (Chippano 
et  al. 2020). If the objective is to retain AM symbiosis, then forage production 
should reach lower values than those agronomically acceptable, especially for 
S. arundinaceus. Thus, the presence of L. tenuis in grasslands or pastures may con-
tribute to maintaining the native AM fungal communities under a wide range of soil 
P availability and water stress conditions (Escudero and Mendoza 2005; García and 
Mendoza 2008; Chippano et al. 2020; García 2021).

Another point to highlight is the solubility of the P source added and the different 
soil P availabilities reached with each P source. The availability of a P source to 
plants largely depends on its rate of dissolution. However, the availability of P to 
plants and thus to AM fungal communities may be altered by the influence of soil 
properties, soil water level, and P-source management factors. In particular, 
Covacevich et al. (2006) showed that, in a P-deficient soil (available P: 6.5 mg P 
kg−1) of a temperate grassland, 60 kg P ha−1 as soluble superphosphate decreased 
both the AM colonization in S. arundinaceus roots and the number of propagules. 
In contrast, 60  kg P ha−1 as phosphate rock did not change AM colonization or 
propagules, associated with a higher solubility of soluble superphosphate than 
phosphate rock (Covacevich et  al. 2006). Regarding this issue, Mendoza et  al. 
(2009) showed that P doses from 0 to 480 mg P kg−1 in a P-deficient soil (5.7 mg P 
kg−1) decreased AM colonization in L. tenuis roots by 12% despite the P fertilizer 
source (P soluble as KH2PO4, powdered TSP, or phosphate rock) under controlled 
conditions. In the same line, more recently, we evaluated the effect of a low P dose 
(15  mg P kg−1 as KH2PO4) on the mycorrhizal infectivity of a P-deficient soil 
(6.27 mg P kg−1) and found that the P dose applied did not affect mycorrhizal soil 
infectivity with L. tenuis as test plant (Chippano and García 2021a). In another 
study, this P dose was able to increase the forage production of L. tenuis and to 
maintain AM colonization in its roots (Chippano et al. 2020). These two comple-
mentary studies (Chippano et al. 2020; Chippano and García 2021a) suggest that 
low to moderate P doses (30–60 mg P kg−1 as KH2PO4) may be a sustainable strat-
egy to increase L. tenuis forage production without affecting AM root colonization 
and mycorrhizal infectivity in P-deficient soils of the Flooding Pampa.

Regarding the role of AM symbiosis on plant growth and P uptake, several stud-
ies have reported a higher AM response in legumes than in grasses (Tawaraya 2003; 
Tran et al. 2019; Chippano et al. 2021) and a higher AM response in C4 than in C3 
grasses (Hetrick et al. 1990; Cavagnaro et al. 2014; Chippano et al. 2021) despite 
soil P availability. In this regard, in a recent study, we evaluated the different strate-
gies for P uptake between a legume (L. tenuis) and C3 and C4 grasses (S. arundina-
ceus and P. coloratum, respectively) under P-deficient conditions (Fig.  17.1) 
(Chippano et al. 2021). According to the PCA diagram performed, the main strategy 
of L. tenuis was the association with AM fungal communities, whereas that of 
S. arundinaceus was the highest ability of the root system to explore the soil (high-
est specific root length (SRL) and root mass fraction (RMF)) (Chippano et al. 2021). 
In contrast, the strategy of P. coloratum could not be explained by changes in root 
traits (SRL and RMF) or AM association (Fig. 17.1) (Chippano et al. 2021). It is 
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Fig. 17.1 Principal component analysis (PCA) diagram for shoot dry weight (DW), specific P 
uptake (SPU), specific root length (SRL), root mass fraction (RMF), and P in shoot of Lotus tenuis 
(Lt), Schedonorus arundinaceus (Sa), and Panicum coloratum (Pc) with (M) or without (NM) AM 
fungi (gray and white circles, respectively) grown without P added for 68 days. The variables are 
represented by arrows. (Reproduced from Chippano et al. 2021)

interesting to highlight that, under P fertilization, the association with AM fungal 
communities caused an increase in the biomass yield of L. tenuis similar to that 
obtained with only the addition of a low P dose (15 mg P kg−1) in the absence of AM 
fungi. The ability of AM fungi to explore a greater volume of soil than the root sys-
tem and absorb P beyond the limits of the P depletion zone (Smith and Read 2008) 
allowed supplanting the net effect of a low P dose on L. tenuis growth. At high-P 
supply (75  mg P kg−1), the mycorrhizal growth and mycorrhizal P response 
decreased abruptly but with positive values. These results indicated that L. tenuis 
could take advantage of the benefits provided by AM fungal communities with and 
without P addition (Chippano et al. 2021). Regarding grasses, a high P dose (75 mg 
P kg−1) caused a negative mycorrhizal growth and P response on P. coloratum and a 
positive mycorrhizal P response on S. arundinaceus, associated with the mainte-
nance of a low percentage of AM root colonization (3.47%) (Chippano et al. 2021). 
These results are in accordance with those of Hetrick et al. (1990), who suggested 
that C3 grasses could maintain low levels of AM root colonization despite a high-P 
fertilization, since the maintenance of low levels of root colonization could ensure 
rapid proliferation of an already established symbiosis when a period of active 
nutrient uptake by the plant demands it.
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In temperate grasslands, competitive and facilitative interactions between plants 
of the same or different species operate simultaneously. The balance between inter-
actions largely varies as a result of the intensity of management practices, environ-
mental conditions, plant developmental stage, and species composition (Valladares 
et al. 2015; Rehling et al. 2021). In addition, plants can also enhance or reduce the 
AM fungi colonization of neighboring plants, thus conditioning the outcomes of 
plant interactions (Klironomos 2003; van der Heijden and Horton 2009). In temper-
ate Argentine grasslands and pastures, some reports have evaluated the role of AM 
fungi in both inter- and intraspecific interactions (Di Bella et al. 2019; Chippano and 
García 2021b). In these interactions, AM fungi can enhance the rhizospheric envi-
ronment of plants adapted to grow under salinity and/or alkalinity to promote the 
presence of species unable to grow under these stress conditions. This has been 
demonstrated by Di Bella et al. (2019), who found that P. coloratum established in 
a saline-sodic soil of the Flooding Pampa allowed creating suitable microsites 
through AM symbiosis for the establishment of L. tenuis in its neighborhood. In 
addition, several authors (Facelli et al. 1999; Smith and Read 2008; Tedersoo et al. 
2020) have shown that the mycorrhizal hyphal network is able to regulate plant- 
plant interactions through the nutrient flux between symbiosis partners and tends to 
intensify intraspecific competition more than interspecific competition. Moreover, a 
recent study of our group has shown under controlled conditions (Chippano and 
García 2021b) that AM fungi can increase intraspecific competition between 
legumes at different growth stages. In this study, L. tenuis seedlings grown in the 
neighborhood of conspecific adult plants defoliated at different intensities showed a 
negative mycorrhizal growth response, despite the defoliation intensity of neighbor-
ing adult plants (Chippano and García 2021b). This is partly because the AM ben-
efits may be unequally distributed if the plants differ in their sink strength for the 
shared resources in the hyphal network (Kytöviita et al. 2003). Then, we concluded 
that mycorrhizal L. tenuis adult plants modified the competitive balance with seed-
lings in their favor (Chippano and García 2021b). Our results also showed that non- 
mycorrhizal adult plants did not affect seedling growth since seedlings grown alone 
and near adult plants reached the same biomass production and the competition 
balance was near zero (neutral interaction) despite the increase in defoliation inten-
sity of adult plants (Chippano and García 2021b). These results suggest that, in 
P-deficient soils, AM symbiosis is a strategy of L. tenuis adult plants to compete and 
regulate the establishment of conspecific seedlings. All these studies are a valuable 
starting point to better understand the role of AM fungi in intra- and interspecific 
interactions that allow increasing the presence of legumes in grasslands and pas-
tures of the Argentine Flooding Pampa.

17.4  Conclusion

This chapter provides information about different aspects of the AM symbiosis in 
temperate grasslands. In particular, it provides data on the effect of grazing/defolia-
tion and P fertilization on the dynamics of the association between plants and native 
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AM fungal communities, as well as on the role of AM fungi in plant-plant interac-
tions of forage species grown in soils of the Flooding Pampa grasslands.

The information gathered in this chapter suggests that the AM symbiosis in natu-
ral grasslands of the Argentine Flooding Pampa is influenced by different factors, 
including soil characteristics, plant species, and climate factors. In addition, the AM 
symbiosis and its benefits on forage plant growth and nutrition in the grassland soils 
of the Flooding Pampa are strongly affected by agronomic practices, P fertilization, 
and grazing/defoliation. In this sense, it is difficult to conclude which of these fac-
tors is more important in controlling changes in AM fungal variables, and it is thus 
necessary to study a natural system in a holistic form along the time.

In relation to the forage species in symbiosis with the native AM fungal com-
munities of the Flooding Pampa grasslands, L. tenuis stands out. This species, which 
is a perennial herbaceous legume naturalized in the Flooding Pampa, is appreciated 
by farmers because of its plasticity, productivity, and nutritional forage value for 
livestock. According to the information presented in this chapter, promoting the 
presence of L. tenuis through low defoliation frequency and a low-P fertilizer dose 
would improve forage yield and quality with the maintenance of AM symbiosis in 
legume-grass communities.

Finally, this chapter highlights that it is necessary to investigate the resilience of 
the AM fungal communities under realistic field conditions in order to implement 
management practices (e.g., low to moderate P fertilization and rational grazing) 
that would increase forage production and minimize the detrimental effects on the 
soil resource and native AM fungal communities of the Flooding Pampa grasslands.
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18.1  Introduction

Grapevines (Vitis vinifera L.) were one of the first fruit species to be domesticated 
and nowadays are the world’s most economically important fruit crop (Keller 2010). 
Grapes can be consumed as fresh or dried fruits, as well as grape juice, marmalade, 
or wine. Worldwide, the global production surface reached 7.5 million ha in 2018 
(IOV 2019), mostly for winemaking, with 292 million hL produced in 2018 (IOV 
2019). At present, grapevines are extensively cultivated in six of the seven conti-
nents, under different and contrasting climates. In South America, three countries 
stood out in vine crops in 2020, Argentina (215 thousands of ha), Chile (207 thou-
sands of ha), and Brazil (80 thousands of ha). Regarding wine production, Argentina 
produced 10.8 million hL, Chile produced 10.3 million hL, and Brazil produced 
1.9 million hL (IOV 2020).

Nowadays, viticulture is facing several challenges that need to be addressed, 
based on scientific support. On one hand, water scarcity in the frame of climate 
change scenarios is of major concern (Miura et al. 2019) since climate models to 
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2050 predict that droughts would increase by the middle of the century (IPCC 2014; 
Santillán et al. 2020) accompanied by increases in temperature. These environmen-
tal variations will impact agricultural crops; in an important way, it will also affect 
viticulture, affecting the production and the potential quality of the grape (van 
Leeuwen et  al. 2019); in addition, there are varieties that have presented greater 
sensitivity to environmental changes such as Cabernet Sauvignon, Chardonnay, and 
Pinot noir (Jackson and Schuster 2007; Muñoz et al. 2008; Hadarits et al. 2010). A 
key element is the improvement of the sustainability of vineyards in terms of water 
stress, since it has been projected that the availability of water may be a limiting 
factor (Santos et al. 2020; Marín et al. 2021). Low levels of available water and long 
periods of drought cause water stress in vines, limiting the absorption of water and 
nutrients, preventing the plant from developing properly (Sardans et al. 2008), alter-
ing both biochemical and physiological processes (Palliotti et al. 2014). However, 
in specific stages of the vine, the water deficit is favorable for the quality of the 
wine, since it produces a decrease in the size of the berry and an increase in the 
phenolic compounds in the skin of the grape (van Leeuwen et al. 2009; Ollé et al. 
2011; Triolo et al. 2019; van Leeuwen et al. 2019). In the context of climate change, 
the impact of increased water deficit and heat stress has been extensively studied in 
vineyards in the northern hemisphere (van Leeuwen et  al. 2019; Santillán et  al. 
2020), but not in the southern hemisphere. Consequently, this also means new cli-
matic conditions in areas recognized as too cold for the establishment of vineyards, 
leading to an extension of new cultivation areas due to the expansion of production 
(Santillán et al. 2020).

Viticulture in Chile as a case study is very interesting due to the existence of dif-
ferent edaphoclimatic conditions in its nearly 4300 km from north to south, where 
prestigious world-class wine companies are found. This agroindustry in Chile has 
experienced an extreme drought with a drastic drop in precipitation (estimated 
between 30% and 45% in the following decades) causing an increased intensity and 
frequency of fires (González et al. 2020). The latest fire of vast magnitude, the so- 
called extreme fire event or megafire, occurred in the 2016–2017 summer season in 
central and south central areas (32–40° S Latitude) and reached a historical maxi-
mum of affected area of about 600,000 ha (de la Barrera et al. 2018; González et al. 
2020). The Mediterranean areas of the country, where grapevine production concen-
trates, have been especially affected by this mega-drought and extreme fire events. 
It has to be underlined, however, that a common oenological practice in many viti-
cultural regions is controlled deficit irrigation because of its benefits to plants as 
well as the growth and metabolism of grapes, which improves the final wine product 
(Chaves et al. 2010).

Interestingly, the wine production areas have been moving fast toward the 
Southern Chile, to areas with higher winter and spring precipitations but lower tem-
peratures. As a result, the South has experienced an increase in planted areas, mostly 
with cool climate varieties, mainly Chardonnay followed by Pinot noir. Even though 
plantations have been slowly increasing in the South, viticulture is facing a new 
constraint such as the production on Andisol, very acidic, phosphorous fixing, and 
prone to induced aluminum (Al) toxicity.

P. Aguilera et al.



359

Considering that new rootstock material specific for soil threats, even though 
appropriate, is a long-lasting work involving plant breeding, alternative approaches 
should be explored. It is relevant to consider that, facing the existing restrictions in 
acid Andisol of Southern Chile, one of the practices used corresponds to the use of 
calcareous amendments that are applied in large areas. In viticulture this practice 
could be used from a location located in the cultivation row. However, the high plu-
viometry ends up washing the existing bases in the soil. On the other hand, P is fixed 
in low availability, and, in turn, Al in low pH appears in its phytotoxic form. Also, 
since vineyards are subjected to a significant pressure by applying numerous agro-
chemicals to reduce pests and weeds (Popescu 2016), many of which have an envi-
ronmental impact (Pascual 2016; Popescu 2016); environmentally friendly strategies 
would be more convenient. In fact, there is a growing interest from wine producers, 
universities, research centers, and in general in the scientific community, in improv-
ing the understanding of the ecosystem services that could be granted by products 
based on microorganisms such as biostimulants that correspond to bioformulations 
with a scientific-technological base in which the base is made up of species of one 
or more microorganisms whose name in the research stage is inoculant, inoculum, 
or inocula. Special emphasis on high-tech agriculture has acquired arbuscular 
mycorrhizal fungi (AMF)-based biostimulants (Aguilera et al. 2022).

18.2  Mycorrhizal Symbiosis: Role in Agricultural 
Management Systems

The AMF, belonging to Glomeromycota phylum (Wijayawardene et al. 2018), are 
obligate symbiotic partners of up to 78% of land plants (Brundrett and Tedersoo 
2018). This symbiosis is crucial for the plant community’s health and the function-
ing of nutrient cycles at the ecosystem and landscape level (Castillo et al. 2006; 
Azcón-Aguilar and Barea 2015). In a recent study, Marín et al. (2021) showed that 
for Chile, 59 AM species have been reported, mainly documented in agroecosys-
tems as reported elsewhere in Aguilera et al. (2017 and reference therein). Globally, 
this symbiosis also presents very low levels of endemism (Davison et al. 2015). The 
AMF symbiosis is based on the bidirectional exchange of nutrients (Smith and Read 
2008). Basically, the fungus improves the host plant nutrition via an extensive 
mycelium network proliferating in the soil, while the plant provides the energy, 
from photosynthates to the fungus (Bago et al. 2002; Barea and Richardson 2015). 
In this context, several studies have also shown that AMF favor the adaptation of 
host plants exposed to abiotic stressors (Bissonnette et al. 2010; Janoušková and 
Pavlíková 2010), including phytotoxic Al3+ (Seguel et al. 2016, 2019), one of the 
main constraints for crop production in acidic Andisols as here targeted.

The AMF acquire special relevance in agricultural management systems, because 
they are ubiquitous in soil and play an important role in plant nutrition and health, 
water uptake, ecosystem services, and soil quality (Barea 2015). Additionally, AM 
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fungi can improve the soil structure through the formation of stable aggregates by a 
specific group of proteins called glomalin, usually measured as glomalin-related soil 
protein (GRSP) (Rillig 2004; Rillig and Mummey 2006; Kumar et al. 2018; Wang 
et al. 2018). These proteins can be produced by the AMF or extracted directly from the 
soil or even from artificial environments when these AMF are included in soilless 
systems (Nichols 2010). The environment where the fungus and the root coexist is 
currently named as mycorrhizosphere and has been defined as the zone in the soil 
where the processes that affect the root and mycelial structure are developed (Barea 
2015). The mycorrhizhosphere, however, is indirectly affected by agricultural prac-
tices by modifications on the soil physics, chemical composition, and other aspects 
(Barea 2015). In this sense, it is important to gain deeper knowledge on how agricul-
tural practices can promote the AM fungi activity leading to the management of the 
AMF communities (Aguilera et al. 2019). Even though the approximately 300 mor-
phospecies currently recognized have been described mainly based on morphological 
and anatomical differences of the spores, a large part of the AMF structures (arbus-
cules, vesicles, and hyphae) are found within the root of the plant or just do not form 
spores, making this method unreliable (Błaszkowski et  al. 2015; Oehl et  al. 2017; 
Sieverding et al. 2014). More recently, molecular techniques have made possible the 
precise identification of various species either in plant roots or soil samples, through 
rRNA nuclear genes (Kohout et al. 2014; Öpik et al. 2014; Renaut et al. 2020; Stevens 
et al. 2020). With this approach it has been found that there is a greater diversity of 
AMF than previously thought by analyzing only morphospecies from only soil spores 
and more data on the molecular diversity of HMA or phylogroups is now available. 
The AMF phylogroup has been proposed to be called “virtual taxa” (TV), in order to 
have a standard taxonomy of the molecular diversity of the AMF known to date (Öpik 
et  al. 2010, 2014). Given this, today approximately 425 AMF TVs are recognized 
(MaarjAM database, status October 2018); of which, approximately 60, can be 
assigned to the morphospecies concept (Öpik et al. 2014). All these indicate that there 
is a greater AMF diversity than previously thought. Finally, when describing the AMF 
that make up a given community, it is necessary to consider both the roots and the soil. 
AMF inhabit both compartments, and when soil has been compared to root for the 
description of AMF communities, it has been found that the fungi present in the soil 
are not necessarily the same than those present in the roots and vice versa (Avio et al. 
2020; Jansa et al. 2020).

18.3  Current Trends and Projection in Viticulture 
Using AMF

The AMF have been gaining space in modern agriculture as a sustainable strategy 
for plant production. Indeed, there is science-based supportive evidence that AMF 
symbiosis can favor plant fitness when exposed to salinity, drought, diseases, nutri-
tional deficits, and heavy metals, among others, providing ecosystem benefits and 
improving the stability of soil aggregates (Vlček and Pohanka 2020). Recently, an 
increasing interest has been devoted to AMF in the field of ecology and plant 
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physiology, reporting benefits of the symbiosis in various crops, dealing with bio-
mass accumulation, translocation of nutrients, changes in heavy metals homeosta-
sis, and exudation of compounds by the mycorrhizal root, among others (Aguilera 
et al. 2011; Miransari 2017). The application of plant biostimulants in viticulture 
based on AMF as an eco-friendly strategy has proved to be of benefit for viticulture. 
Mycorrhizal symbiosis has been reported to promote P absorption in grapevines 
(Schreiner 2005; Khalil 2013; Trouvelot et al. 2015), by spreading Pi through its 
extensive extraradical mycelium. Also, N uptake is promoted by AMF (Jansa et al. 
2019) generating an increase in the biomass of vine plants (Karagiannidis et  al. 
2007). Fellbaum et  al. (2012) reported that AMF can mobilize N in the form of 
arginine. In addition to macronutrient absorption, AMF supports the absorption of 
different chemical elements. Several AMF species have been used as inoculants in 
vine plants, in which species belonging to Glomus genus (G. constrictum, G. desertí-
cola, and G. mosseae) have been highlighted, which have increased the contents of 
Ca, K, Mg, Fe, and B, among others (Schreiner 2005). These fungi can not only 
increase nutrients absorption, but also they can attenuate serious constraints that 
water deficit generates. Water stress is a factor that can be limiting in grapevine 
production affecting phenological development and consequently production qual-
ity. Although AMF are described in literature mainly because they favor water and 
nutrient absorption (Püschel et  al. 2020), mechanisms that confer an increase in 
water absorption are not yet elucidated, only the expression of putative aquaporin 
genes (Giovannetti et  al. 2012; Kikuchi et  al. 2016). In this sense, it has been 
observed that mycorrhized vine plants have a more efficient use of water (Valentine 
et al. 2006). On the other hand, AMF provide protection to plants exposed to metals 
such as Al and heavy metals such as copper (Cu). Although mature vines that could 
be exposed to this type of phytotoxicity could be adapted to this condition, new 
plants could be affected, and here AMF could play a mitigating role (Cornejo et al. 
2013). Along with the above, it has been reported that AMF can induce defense 
capacity of plants against pathogens, nematodes, and herbivorous arthropods (Pozo 
and Azcón-Aguilar 2007; Cameron et al. 2013). AMF species, genus, or strains that 
they have been adapted to several biotic or abiotic stresses could have great poten-
tial use as inoculants oriented to develop biological formulations for use in sustain-
able agriculture. However, field data is still scarce (Tsvetkov et al. 2014; Szczałba 
et al. 2019), and local knowledge is much needed, particularly for chemical traits, 
such as those described for acidic Andisol, and for grapevines managed under con-
trolled deficit irrigation regimes. In particular, grapevines have a high affinity for 
AMF, as seen by high levels of colonization (Sas Paszt et al. 2019), and by means 
of biostimulants, colonization rates can reach up to a 30% (Petit and Gubler 2006; 
Sas Paszt et al. 2019) or even 70% (Fig. 18.1, Flores et al. unpublished data). The 
high affinity between the fungus and the grapevine has been attributed to the increase 
in chitinase activity (Li et al. 2006). In addition, it has been reported that the use of 
AMF in grapevines positively affects yield, water use efficiency, and growth after 
replanting (Trouvelot et al. 2015). Interestingly, it has been shown in Pinot noir that 
the diversity of AMF communities varies according the phenological stages of the 
plant (Massa et al. 2020). Also, some AMF species such as Funneliformis mosseae 
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Fig. 18.1 AMF visualization of grapevine plants after 4 months of application of inoculum in 
commercial vineyards. Photo’s credits: P. Aguilera and N. Becerra

and Rhizophagus irregularis have been promising in vineyards growing in soils 
with high concentrations of heavy metals (Nogales et al. 2019).

It has to be said that in grapevines cultivated for oenological purposes, besides 
yield, the quality of the grape berries is of paramount importance. The chemical 
composition of the grape berries, regarding primary and secondary metabolites, 
determines the wine quality and retail price. In this regard, it is interesting to note 
that roots inoculated with AMF have resulted in a higher concentration of antioxi-
dant compounds, such as phenols, anthocyanins, carotenes, and tocopherol, as well 
as flavor compounds in cultivated species such as tomato, strawberry, and lettuce 
(Castellanos-Morales et al. 2010; Baslam et al. 2011, 2013; Han et al. 2012; Zeng 
et al. 2014; Aguilera et al. 2021a, b). Also, the observed effects of AMF have been 
reported to be more dramatic in plants under water deficit (Mena-Violante et  al. 
2006; Baslam and Goicoechea 2012). Some evidence is available on grapevines, 
where a positive link between AMF and secondary metabolism at the berry level has 
been suggested (Rouphael et al. 2015; Schreiner 2020), in particular regarding ter-
penes (Trouvelot et  al. 2015). In fact, species, such as F. mosseae, have been 
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suggested to favor “terroir” properties in wines, i.e., organoleptic properties very 
distinctive of a specific productive site (Aguilar et al. 2017).

As suggested previously, one important aspect to take into account regarding 
eventual plantations in acidic Andosols is the chemical properties of these soils 
inducing Al phytoxicity and low P availability. Tools have been sought to solve this 
problem, and conveniently, it has been reported that AMFs, besides acting as bios-
timulant, biofertilizer, bioregulator, bioprotector, and biocide, favor nutritional 
aspects in plants, increasing nutrient translocation, especially P, and at the same 
time decrease translocation of metals (Al) and heavy metals (Cu). In fact, it seems 
that AM colonization occurs mainly under low levels of soil fertility, particularly P 
(Smith and Read 2008), and a positive effect of established AMF has been observed 
in P-deficient soils (Smith et al. 2011). The P is a macronutrient of vital importance 
for metabolic processes in crop production, being key in photosynthesis, respira-
tion, and energy transduction and as a structural component of membranes, nucleic 
acids, and enzymes (Ramaekers et al. 2010; Plaxton and Tran 2011; Seguel et al. 
2017). However, acid soils are characterized by P deficiency and aluminum (Al) 
toxicity, which limit root growth and increase susceptibility to drought. Therefore, 
the use efficiency of P (PUE) is essential, which is defined here as the amount of P 
accumulated in the tissue per unit of biomass (sprout and/or root) or grain produced 
(Rose and Wissuwa 2012), which is related to metabolic modifications that can 
reduce the demand for P during plant development (Hammond et al. 2009; Veneklaas 
et al. 2012). Therefore, improving internal PUE will lead to more resource-efficient 
use of P instead of increasing the absorption of potentially scarce forms of P, since, 
in theory, crops will acquire less P, minimizing the need of P fertilizers (Campos 
et al. 2018). Furthermore, the microbiota associated with plant roots can improve 
soil P acquisition through adaptive strategies such as changes in root geometry and 
architecture that improve the exploitation of soil volume (Gahoonia and Nielsen 
2004; Lambers et al. 2006; Seguel et al. 2017). Symbiosis with arbuscular mycor-
rhizal fungi (AMF) can give the plant a relative tolerance to Al, which has been 
directly attributed to a greater acquisition of P, Ca, or Mg (Aguilera et al. 2018, 
2021a; Campos et al. 2018), by promoting the exudation of organic acids by the 
roots of the plants to chelate Al (Klugh-Stewart and Cumming 2009; Seguel et al. 
2013). In addition, gene expression that could be involved in the mechanisms of Al 
tolerance and P acquisition efficiency in vine plants will be studied. Aluminum has 
been identified by several authors as a cause of the increase in reactive oxygen spe-
cies (ROS), which in large quantities generate cellular damage in plants 
(Giannakoulas et al. 2010; Xu et al. 2012); however, plants have defense systems 
that keep ROS levels low (Gad et al. 2010), which include antioxidant enzymes such 
as peroxides dismutase (SODs), peroxidases (PODs), and catalase (CAT). Various 
studies show that the presence of HMA increases the activity of antioxidant enzymes 
in plants under abiotic stress conditions (Huang et al. 2014; Mirshad and Puthur 
2016; He et al. 2020); in addition, AMF has the ability to alleviate oxidative damage 
to plants by hyphae that accelerate the rate of peroxide flow from the host plant to 
the rhizosphere (Huang et  al. 2017). The antioxidant capacity of enzyme 
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components is probably an important factor that determines tolerance to Al in plants 
(Xu et al. 2012).

Finally, viticulture for high-quality wine is normally accompanied by regulated 
deficit irrigation in order to improve the grape berry composition. However, deficit 
irrigation leads to negative effects such as a reduced photosynthetic capacity, lower-
ing yield in the medium term. If additional water deficit is applied to vineyards 
currently managed with controlled deficit irrigation, it has been observed that AMF 
frequency increases, simultaneous to a decline in the fine root density, suggesting a 
compensation (Schreiner et al. 2007). Furthermore, in 1-year-old vines colonized 
with AMF, physiological traits related to water deficit, such as stomatal conduc-
tance and net CO2 assimilation, were shown to be higher than in non-colonized 
plants (van Rooyen et al. 2004). The underlying mechanisms of such effects, how-
ever, are still not clear but are suggested to depend on soil type, rootstock, and the 
AMF genotypes involved (Trouvelot et al. 2015).

18.4  General Statements

Vine cultivation in Chile, due to factors associated with global change, has expanded 
in areas where it had not been developed. The southern edaphoclimatic conditions, 
such as low temperatures, high rainfall, and characteristics of Andosol, present great 
challenges for cultivation, both for the selection of productive varieties and for the 
choice of rootstocks. We have observed that AMF have enormous potential for use 
as bioinoculants. The uptake of nutrients and the modulation of the secondary 
metabolism of the crop allow the AM symbiosis to contribute so that the plant can 
face biotic and abiotic stress, so that an increase in crop vigor and fruit quality is 
generated. Our research group began with studies in morphotaxonomic identifica-
tion of arbuscular mycorrhizal fungi, and then with the implementation of molecu-
lar tools, we have achieved a multiphase approach to these organisms. In recent 
years we have dedicated ourselves to scrutinizing species of arbuscular mycorrhizal 
fungi throughout Chile, and we have generated a germplasm bank, both of general-
ist and specialist species, positively observing their potential for the future develop-
ment of biostimulants. Currently our research line is focused on innovation and 
technology transfer toward the development of inoculants for agricultural produc-
tion. Agriculture will benefit from improving its quality, productivity, and sustain-
ability. Even so, it is necessary to deepen these foundations in the current scenario 
of global change, all these under a paradigm of sustainable agriculture.
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19.1  Introduction

19.1.1  The Argentine Arid Diagonal: Climatic Features, 
Phytogeography and Glomeromycota 
Community Importance

In South America, the arid land regions include the South American Dry Diagonal 
(SADD) that are distributed in two large diagonal of land stripes (Luebert 2021), 
one involved with the Gran South American Chaco that includes the domains of 
Caatinga, Cerrado, and Chaco (Olson et  al. 2001) and the other one also named 
South American Arid Diagonal (SAAD) which is a vast area of drylands of deserts 
which is covering different bioregions such as the Andean region (including high 
Andes or Altoandino, Puna, Atacama, and Peruvian deserts), Monte, Patagonia, and 
Chaco (represented by Prepuna) (Abraham et al. 2020) covering an extensive area 
along the Argentine territory. These two dryland diagonals have a structural and 
crucial role to determine the patterns of distribution of South American biodiversity, 
due to their functions as barriers and corridors for species dispersion, which also 
results in a great difference of flora and fauna between them (Luebert 2021 and 
references therein). It is important to emphasize that none of the biogeographic and 
phytogeographic studies in these both SADD have included fungi in general and 
mycorrhizal fungi in particular in their analysis.

Among the SAAD desertic areas (Abraham et  al. 2020), the Argentine Arid 
Diagonal (AAD) constitutes an area with low precipitations (less than 500 mm) and 
extends from the north of the country (on the border with Bolivia) to Patagonian 
Atlantic coasts (González Loyarte 1995; Fig. 19.1). It integrates a set of dry zones 
that include arid, semiarid, and sub-humid zones with dry periods related to 28 veg-
etation classes adapted to hot and cold desertic environments (Martínez 
Carretero 2013).

The arid and semiarid zones represent two-thirds of the Argentine continental 
surface, and phytogeographic provinces within this surface have a great variety in 
plant community structure (Cabrera 1976; Busso and Fernández 2018; Fig. 19.1).

According to Argentine phytogeographic description of Cabrera (1976) and the 
compilation of Busso and Fernández (2018) about studies performed in the last 
20 years, 7 provinces are partially (High Andes, Prepuna, Chaco, Patagonia, and 
Espinal) or completely included (Puna and Monte) in AAD (Fig. 19.1). In the north-
east of the country is the arid Puna province. It constitutes one of the coldest regions 
in the world (mean annual temperature is 10 °C), and annual precipitation is usually 
less than 200 mm (Busso and Fernández 2018). The dominant vegetation is shrubby 
steppe, and in some areas, there are observed herbaceous steppes; there is a high 
abundance of aphyllous shrubs or with reduced leaves and resinous plants (Carilla 
et al. 2018). The high Andean phytogeographic province has a cold and dry high- 
mountain climate; vegetation is characterized by grassy or cushion chamaephyte 
steppes. The Prepuna province presents a dry and warm climate, with precipitations 
concentrated in summer. The dominant vegetation is xerophytic shrub steppe, with 
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Fig. 19.1 (a) South American Arid Diagonal (SAAD, in gray). (b) Phytogeographic provinces 
included in the Argentine Arid Diagonal (AAD). Adapted from Cabrera (1976) and Abraham 
et al. (2020)

“cardonales” (arborescent cacti species of the genus Trichocereus), dwarf forests 
(Kuentz et al. 2007), and cryptofruticetum communities (buried vegetation, with 
the cups on the soil surface) (Halloy 2002; Halloy et al. 2008; Carilla et al. 2018). 
The western portion of Chaco phytogeographic province is characterized by warm 
and humid summers, dry and temperate winters, mean annual precipitation of 
320 mm, and high thermic amplitude (Cabrera 1976); plant community is character-
ized by a medium to low forest of mesophytic or xerophytic trees, with meadows of 
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forage grass species and isolated shrubs (Cabido et al. 1993). The Monte phytogeo-
graphic province presents a dry climate, being warmer in the north and colder in the 
south, and records annual precipitations from 60 to 500 mm (Morello 2012). The 
plant community is associated with a shrubby steppe with xerophytic, sammophilic, 
or halophilic shrubs (Oyarzabal et al. 2018). The southern portion of the Espinal has 
semiarid climate; the aridity increases from west to south and records annual pre-
cipitations from 350 to 550 mm; the dominant vegetation is a xerophytic forest of 
Prosopis, savannas, and steppes with grass species of good forage quality (Lewis 
and Collantes 1973). Finally, within the Patagonia phytogeographic province are 
the contemplated areas corresponding to the Patagonian steppe. It has a dry and cold 
climate with intense winds and annual precipitations between 100 and 200  mm 
(Paruelo et  al. 1998; Busso and Fernández 2018). The dominant vegetation is 
shrubby steppe, with aphyllous shrubs, reduced or spiny leaves, and the presence of 
cushion species; herbaceous species with good forage quality grow among shrubs 
(Gaitán et al. 2019).

In these arid and semiarid environments, the economic activities are mainly 
related to livestock production (Estelrich et al. 2005; Giorgetti et al. 2006; Quiroga 
Mendiola and Cladera 2018), which has resulted in increasing desertification pro-
cesses at an extremely high level for these ecosystems (Vorano and Vargas Gil 
2002). Also, other activities are carried out related to agriculture, forestry, oil exploi-
tation, and tourism (Abraham et al. 2020). Excessive grazing has degraded many of 
the areas and has caused changes in the type of dominant vegetation (Giorgetti et al. 
2006; Distel 2016). In addition, environmental factors such as droughts, strong 
winds, irregular precipitations, and anthropic factors, such as clearing and excessive 
tillage, have led these environments to degradation state and desertification pro-
cesses (UNEP 1997). Many of these processes are linked to erosion and decrease in 
soil fertility (MEA 2005; FAO 2020).

Fungi of the phylum Glomeromycota have an important ecological role in poorly 
fertile environments used for livestock purposes as fungal partners of arbuscular 
mycorrhizal symbiotic associations with plant roots (Smith and Read 2008). The 
hyphae of these fungi help the host to absorb nutrients, increase photosynthetic 
rates, and recover aerial biomass lost after grazing (van der Heyde et al. 2019). In 
addition, they provide greater resistance to water and nutritional stress and are 
involved in the establishment, assembly, and succession of plant species (Renker 
et al. 2004). In the soil, the mycelium of arbuscular mycorrhizal fungi (AMF) is 
involved in aggregate formation to facilitate adhesion of particles and contribute to 
giving structure and stability, reducing erosion, and improving the water retention 
capacity (Finlay 2008).

In this chapter, we have focused on different studies performed in AAD about the 
ecological role of AMF in natural grasslands used for livestock purposes. 
Establishing relationships between the AMF diversity, mycorrhizal colonization, 
and plant communities under different grazing pressures is a factor key in the con-
servation of forage resources and ecosystem functions in fragile environments with 
low resilience capacity.
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19.1.2  Use and Management of Natural Grassland in AAD

In Argentina, livestock production industry is based on the grazing of native vegeta-
tion on arid and semiarid grasslands. The activities are mainly linked to raising of 
goats and llamas in the northeast of the country, cattle and goat in the central area, 
and sheep in the south (Busso and Fernández 2018; Quiroga Mendiola and Cladera 
2018). Grazing constitutes a modifying and modeling factor not only of the affected 
species but also of the plant community. Moreover, it alters the structure and func-
tionality of the ecosystem (Peri et  al. 2016). Management practices that involve 
conservationist and rotational grazing have been shown to be efficient in maintain-
ing the preferred grass species, without affecting plant diversity (Giorgetti et  al. 
2006). However, inadequate grazing management (continuous and with high stock-
ing rates) and adverse climatic conditions have led to replacement of preferred grass 
species by unpreferred ones, deteriorating the productive potential of natural grass-
lands (Distel 2016; Oñatibia et al. 2020). Moreover, these floristic changes have a 
direct impact on soil fertility, because they affect litter decomposition and nutrient 
mineralization (Ambrosino et al. 2019).

Argentine grasslands are affected by shrub encroachment process (D’Odorico 
et al. 2012; Carilla et al. 2018). It is defined as an increase in density, cover, and 
biomass of plant species with a shrub or semi-shrub growth habit, occurring in envi-
ronments dominated by herbaceous species (van Auken 2009). These woody spe-
cies are native and were originally present in low-density or in restricted areas 
(Dussart et al. 2011). However, various factors (climate change, intensive grazing, 
changes in historical fire regimes, and the dispersal of woody plant seeds by live-
stock) have increased density and cover of shrub species and favored the develop-
ment of species with low light requirements (Rauber et  al. 2014). Different 
management practices are used to reverse this situation (Kunst et al. 2012). Some of 
them involve controlled burning and mechanical controls. In this way, the system 
“is open” (from a closed physiognomy to a savannah), allows a greater entry of light 
and water, favors the development of herbaceous biomass, and increases the forage 
supply and accessibility to livestock (Adema 2006).

Natural grasslands in good state of conservation have a high abundance and 
diversity of Glomeromycota species (Hartnett and Wilson 2002). Given that, these 
fungi have multiple attributes and functional traits; this event has a great ecological 
and environmental value (Chagnon et al. 2013; Longo et al. 2016; Weber et al. 2019).

19.2  Ecological Role of Glomeromycota Communities

Mutualisms are considered key interactions in structuring ecological communities 
(Bronstein 1994). Mycorrhizal mycelium communicates and integrates plants 
within a community, facilitating colonization by other fungi and transferring com-
pounds among plant roots (van der Heijden and Horton 2009). These processes 
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promote the establishment, growth, survival, and defense of individual plants in a 
wide variety of ecosystems (Simard et  al. 2012). However, the outcome of such 
interactions can range from mutualism to parasitism, depending on the identity of 
the symbiotic species and environmental factors (Bronstein 1994). Plant communi-
ties affect AMF distribution and composition in the soil (Johnson et al. 1992) and 
favor fungal species presence with different ecological attributes maximizing ben-
efits on root architecture (Sikes et al. 2010). In turn, AMF may exhibit “ecological 
host specificity” (McGonigle and Fitter 1990) where roots of the same plant species 
are preferentially colonized by some fungi in contrast to others when grown in the 
presence of the same Glomeromycota community (Li et al. 2014).

There are ecological differences among Glomeromycota species that influence 
the cost-benefit of this association to their plant symbionts. These functional traits 
are mainly related to carbon demands toward their plant hosts, competitive abilities, 
P translocation toward roots, intra and extraradical mycelium production, and spor-
ulation rates (Ijdo et al. 2010; Chagnon et al. 2013; Weber et al. 2019) that are also 
related to different families of Glomeromycota. Thus, members of Glomeraceae 
have characteristics typical of r-strategist species; they have high spore production 
in a short time period and regulate their growth depending on the host plant activity 
(Sýkorová et  al. 2007; Ijdo et  al. 2010). They are associated with disturbed and 
ruderal environments, have rapid growth, and produce anastomosed extraradical 
mycelium close to the root with abundant intraradical mycelium (Parniske 2008). 
Together with Claroideoglomeraceae and Paraglomeraceae, they are considered 
“rhizophilic” symbionts because they allocate most of the resources for hypha 
development in the radical interior (Weber et al. 2019). Resistance to pathogens and 
herbivores is the main benefit that these fungi offer to their plant symbionts 
(Chagnon et al. 2013). Some genera have been described for other semiarid environ-
ments in the world (Aliasgharzadeh et al. 2001; Carvalho et al. 2001). Rhizophagus 
is characterized by high tolerance to environmental stress (Liu et al. 2009) and graz-
ing (Yang et al. 2013). On the other hand, Glomus, commonly found in environ-
ments with low precipitation (Lovelock et al. 2003), shows great adaptation to soils 
of different quality and has a high capacity to establish symbiotic relationships with 
different plant species (Cai et al. 2014).

Members of Gigasporaceae have characteristics of strategic K organisms and 
allocate most of the resources for growth and survival, producing a low spore num-
ber of prolonged viability and bigger size than Glomeraceae (Ijdo et  al. 2010). 
Together with Diversisporaceae, they are considered “edaphophilic” symbionts 
because they produce abundant loose extraradical mycelium and invest few 
resources for intraradical hypha development (Weber et al. 2019). Gigasporaceae 
have a high competitive capacity and increase the uptake of nutrients (mainly P) 
from plant symbiont due to their abundant mycelium (Giovannini et  al. 2020). 
However, due to its low hyphal healing capacity, this family is susceptible to disap-
pearing when environmental conditions are unfavorable (Verbruggen and Kiers 
2010; Giovannini et al. 2020).

The Acaulosporaceae has low growth rates and produces long-lived hyphae with 
low turnover rates (Chagnon et al. 2013). These fungi are poor colonizers of soil and 
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plant roots because they produce little intra- and extraradical mycelium (Powell 
et al. 2009). Considering this feature, together Archaeosporaceae, Ambisporaceae, 
and Pacisporaceae are grouped within a guild called “ancestral” (Weber et al. 2019). 
They are considered stress-tolerant fungi and have reported in natural grasslands of 
Argentina (Lugo et al. 2003; Velázquez et al. 2013; Ambrosino et al. 2018). Members 
of this family can survive in adverse conditions such as low temperatures, soil acid 
pH, and drought (Chagnon et al. 2013). The initial cost to their plant symbiont can 
be high because these fungi can be slow to provide nutritional benefits to their hosts; 
however, plants may be compensated by symbiosis benefits in the long term 
(Chagnon et al. 2013).

19.3  Glomeromycota Communities in AAD 
Natural Grasslands

The Glomeromycota species that have been cited for AAD and included in this 
chapter come from both morphological and molecular identification due to the 
importance of using both approaches as it has been highlighted by Covacevich et al. 
(2021). Moreover, considering the low sporulation of these microorganisms in arid 
soils, these authors suggest employing trap plant multiplication strategies to improve 
the knowledge of AMF richness. We used the AMF morphospecies classification 
proposed by Schüßler and Walker (2010) and Wijayawardene et al. (2020). To date, 
44 AMF taxa have been reported in the phytogeographic regions of the AAD, High 
Andes, Puna, Monte, and Patagonia; those taxa that were identified to species level 
are recorded in Table 19.1.

Along the AAD, Glomeromycota species were grouped in three orders and eight 
families: Archaeosporales, Ambisporaceae; Diversisporales, Acaulosporaceae, 
Diversisporaceae, Gigasporaceae, and Pacisporaceae; Glomerales, 
Claroideoglomeraceae, Entrophosporaceae, and Glomeraceae. The highest number 
of AMF species belonged to Glomeraceae (17 species), followed by  
Acaulosporaceae (10 species), Gigasporaceae (6 species), Ambisporaceae (3 spe-
cies), Diversisporaceae, Claroideoglomeraceae, Pacisporaceae, and 
Entrophosporaceae (2 species each) (Fig. 19.2).

These results are in agreement with Stürmer et al. (2018) and Cofré et al. (2019), 
who reported that Glomeraceae is the dominant family in South America and then 
Acaulosporaceae and Gigasporaceae, considering the species number per family. 
The highest number of AMF species was recovered in Patagonia (52%) followed by 
Puna (36%), Monte (31%), and High Andean (23%) regions. In a recent review, 
Cofré et al. (2019) recorded 83 morphospecies for Argentina. The number of AMF 
species isolated from the different biogeographic regions included in this work con-
stitutes a significant contribution to the total country diversity and highlights the 
importance of continuing to carry out studies that promote the knowledge and con-
servation of biological diversity of Glomeromycota associated with these extreme 
environments.
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Table 19.1 List of arbuscular mycorrhizal fungi (AMF, Glomeromycota) species described or 
cited in the biogeographic regions included in Argentine Arid Diagonal (AAD)

AMF taxa
Biogeographic regions
High Andean Monte Puna Patagonia

Archaeosporales
Ambisporaceae
Ambispora leptoticha X
Am. fecundispora X
Am. gerdemanii X X
Diversisporales
Acaulosporaceae
Acaulospora delicata X
A. denticulata X
A. excavata X X
A. foveata X
A. laevis X X
A. mellea X X
A. paulinae X
A. rehmii X
A. scrobiculata X
A. spinosa X X
Diversisporaceae
Corymbiglomus globiferum X
Diversispora spurca X
Gigasporaceae
Dentiscutata heterogama X
Gigaspora margarita X
Gi. ramisporophora X
Scutellospora biornata X
S. calospora X
S. dipapillosa X
Pacisporaceae
Pacispora scintillans X
P. patagonica X
Glomerales
Claroideoglomeraceae
Claroideoglomus etunicatum X X X
C. lamellosum X
Glomeraceae
Dominikia iranica X
Funneliformis caledonium X
Funneliformis geosporus X X X
F. monosporus X
F. mosseae X X X X

(continued)
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Table 19.1 (continued)

AMF taxa
Biogeographic regions
High Andean Monte Puna Patagonia

Glomus ambisporum X
G. fuegianum X
Rhizophagus aggregatus X
R. clarus X X
R. fasciculatus X X
R. intraradices X X X
R. irregularis X X
R. microaggregatum X X X
Sclerocystis coremioides X
S. sinuosa X
Septoglomus constrictum X
Se. viscosum X
Entrophosporaceae
Entrophospora baltica X
E. infrequens X X
Total number of AMF species 10 14 16 23

Fig. 19.2 Percentage (%) of the number of species per family of Glomeromycota reported in 
grassland of the Argentine Arid Diagonal (AAD)

The AMF presence has been reported in grasslands around the world (Hartnett 
and Wilson 2002), as well as the impact caused by human activities on vegetation 
and AMF. Studies performed in different arid environments in Asia reported Glomus 
as dominant AMF genus (Su and Guo 2007) and an effect of different grazing inten-
sities on AMF richness and diversity (Su and Guo 2007; Ba et al. 2012; Kusakabe 
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et al. 2018). Stutz et al. (2000) found similarities in the AMF species composition 
from 54% to 79% and limited mainly to members of the Glomeraceae and 
Acaulosporaceae in desert areas of North America and semiarid grassland of 
Namibia. Moreover, in arid regions of South America, Funneliformis geosporum 
prevails in thedry south-central Andes and in Brazil, Claroideoglomus etunicatum is 
associated with the Caatinga ecodivision, and genera Ambispora and Rhizophagus 
are associated with the Cerrado ecodivision (Cofré et al. 2019).

Glomeromycota diversity reported in this chapter comes from the analysis of 
scientific works carried out in natural grassland under real or simulated grazing 
(Mendoza et al. 2002, 2011; Ambrosino et al. 2018; Dudinszky et al. 2019) and 
undisturbed environments of AAD (Lugo et  al. 1995, 1997, 2008; Silvani et  al. 
2017; Covacevich et al. 2021). Livestock affects soil structure and reduces AMF 
sporulation (Allen and Allen 1980; Daniels and Trappe 1980; Thurow et al. 1986). 
Grazing alters plant species composition (Distel and Bóo 1996; Augustine et  al. 
2017; Porensky et  al. 2017). The effects of grazing on AMF are controversial 
because the responses of these biotrophic symbiotic fungi to herbivory are context 
dependent and would be directly related to the carbon flux among plant-AMF-soil 
and the intensity and extent of grazing over time, the mycorrhizal dependence of 
grazed plants, adaptation of AMF, and their host plants to grazing (van der Heyde 
et al. 2019). Furthermore, AMF responses considering soil hyphal length, host root 
colonization, composition of soil communities, and their sporulation by grazing 
were mainly driven by the extent of grazing time (van der Heyde et al. 2017). For 
example, in Puna, longtime grazing has caused intense shrubland expansion to the 
detriment of grassland habitats. Overall, a global meta-analysis of livestock effect 
on AMF has shown the negative effect of heavy or moderate grazing on AMF abun-
dance; this AMF diversity variable was also reduced due to low annual precipita-
tion, longtime grazing, and, consequently, host aboveground biomass reduction 
(Yang et al. 2020). Intensive grazing affects AMF negatively because it reduces the 
photosynthetic capacity of plants (Harley and Smith 1983) and limits the supply of 
carbon to the roots (Barto et al. 2010). On the other hand, under moderate grazing, 
symbiosis with fungi would increase plant species tolerance by increasing the nutri-
ent supply, promoting compensatory growth, and favoring plant competitive capac-
ity (Hartnett and Wilson 2002). However, the grazing effects on AMF diversity in 
grasslands of arid and semiarid zones remain in discussion.

In some cases, changes in AMF communities have been independent of host 
plant identity (Mendoza et  al. 2002, 2011; Dudinszky et  al. 2019). However, 
Ambrosino et al. (2018) demonstrated that simulated grazing did not affect the den-
sity, richness, and diversity of AMF in semiarid soils of northeastern Patagonia. The 
authors argued that grazing intensity might not have been sufficient to decrease 
photosynthetic tissue significantly and reduce the availability of resources to inhibit 
AMF colonization rates or induce mortality (Trent et al. 1988). Rather, the particu-
lar characteristics of the grass species such as plant size, litter quality, and plant 
developmental morphology stage were influential in altering AMF communities 
(Ambrosino et al. 2018).
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As mentioned above, AMF species can be classified according to the relation-
ships between life history traits and environmental abiotic filters, competitors, stress 
tolerant and ruderal (Chagnon et al. 2013); or according to biomass allocation to 
extraradical mycelium, intraradial mycelium, and spores, rhizophilic, edaphophilic, 
and ancestral (Weber et al. 2019). Many researchers argue that it is important to 
consider these AMF functional traits in the study of changes in the abundance and 
diversity of AMF spores. Members of Glomeraceae and Claroideoglomeraceae 
showed the highest spore abundance in natural grassland of AAD. These families 
are considered ruderals and rhizophilics and have strategies related to a short life 
cycle, rapid and abundant spore production, and high colonization rate. These fea-
tures allow AMF to re-establish a symbiosis following grazing. Acaulosporaceae 
species that have low growth rates but efficient carbon use exhibited erratic behavior 
with respect to grazing intensity. These functional traits might be a way to tolerate 
abiotic stress factors and grow with carbon-limited amount provided by its plant 
symbiont. Conversely, Gigasporaceae species were generally absent in sites with 
high grazing intensity. The notable decrease in photosynthetic tissues would not be 
enough to cover the high demand for carbon by species belonging to this family and 
might to explain the absence or decrease in the record of spores.

Although the different functional groups recently mentioned are a component of 
the Glomeromycota diversity, the benefit that each AMF family provides to its host 
is different. Fungi belonging to edaphophilic guild (i.e., Gigasporaceae species) 
provide higher capacity to explore the soil and acquire nutrients than rhizophilic 
fungi (i.e., Glomeraceae). Under limited availability of nutrients and water, the 
exclusion or reduction of some family might alter the benefits for the plants.

19.4  AMF Colonization: Effect of Management 
and Ecophysiological Characteristics of Plant Species 
in Semiarid Grasslands

Arbuscular mycorrhizal fungi establish an obligate symbiosis with most land plants 
of ecosystems in the world (Schüßler et al. 2001; Hempel et al. 2007; Spatafora 
et al. 2016). Arbuscular mycorrhiza is distributed from the equator to the Antarctic 
and Arctic regions (Trappe 1987; Smith and Read 2008) and is even found at high 
altitudes until 5250 m in the Andes (Schmidt et al. 2008). The symbiosis between 
plants and AMF favors plant persistence in unfavorable conditions (Koltai and 
Kapulnik 2010). In arid environments, this association improves tolerance to 
drought, allowing access to soil nutrients and promoting plant growth (Dhillon and 
Zak 1993; Körner 1999).

Colonization of AMF in extreme environments of AAD is confirmed in this chap-
ter. The reports include studies performed in: (i) Sierras de las Quijadas National 
Park, located between the biogeographic regions of Monte and Chaco (Lugo et al. 
2015), (ii) native highland grasses in the Puna (Lugo et  al. 2012, 2015, 2018; 
Menoyo et al. 2020), and (iii) hypersaline Andean wetlands (Silvani et al. 2013).
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Grazing alters root morphology, soil physical-chemical properties, and structure 
and composition of the plant communities (Hiiesalu et al. 2014). These modifica-
tions alter the root colonization by AMF (Kojima et al. 2014). Some studies mention 
a decrease (Eom et al. 2001), while others report increases (Frank et al. 2003) or 
even no changes in the percentages of AMF colonization (Torres et  al. 2011). 
Moreover, grazing can affect the colonization quality increasing the presence of 
arbuscules or vesicles on plant roots and causing the symbionts to face stressful situ-
ations (Parodi and Pezzani 2011; Piippo et al. 2011).

In the south of the Province of Buenos Aires, Torres et al. (2011) studied the 
simulated grazing effect on mycorrhizal colonization in grasses (native, naturalized, 
and introduced). In all cases, levels of mycorrhizal colonization were similar after 
defoliation. However, higher colonization percentages were recorded in native spe-
cies, parameter that contributes to defoliation tolerance. Similar results were found 
by Ambrosino et al. (2020), who reported that moderate defoliations did not affect 
total colonization in the roots of three species of perennial grasses with different 
palatability. However, changes in structure colonization were observed. Higher per-
centages of vesicles and arbuscules were detected in Poa ligularis (palatable specie) 
and Amelichloa ambigua (unpalatable specie), respectively. These results evidenced 
plant identity effect on mycorrhizal association and higher dependence on its fungal 
symbionts in unpalatable grass species.

Studies performed in Patagonia differ from those mentioned above and showed 
that palatable species was associated with the highest percentages of colonization. 
Colonization percentages were the highest during active season of grass species and 
the lowest under overgrazing conditions. These results suggest that under excessive 
grazing conditions, the benefits of mycorrhizae for the plant could be reduced 
(Cavagnaro et al. 2019). In agreement, García et al. (2012) demonstrated that low 
grazing intensity favored AMF colonization in degraded grasslands of Tierra 
del Fuego.

Shrub presence in natural grasslands causes spatial differences in nutrient avail-
ability and water and soil biological activity (Maestre et al. 2011). Cavagnaro et al. 
(2017) conducted a study in the Patagonian steppe and compared sites with different 
types of dominant vegetation, shrub patches and grasses in bare soil patches. They 
observed that mycorrhizal colonization was higher under shrubs and palatable grass 
species. Shrub patches were a critical point of fertility and may be functioning as 
refuge for beneficial associations between plants and AMF. This phenomenon 
should be considered in study of symbiotic associations; spatial heterogeneity in the 
AMF composition might reveal possible mechanisms for program development that 
promote the conservation and revegetation in arid ecosystems (Cavagnaro 
et al. 2017).

Prescribed burning influences arbuscular mycorrhizal colonization in semiarid 
grasslands. The direct effects of burning on the propagules of arbuscular fungi 
depend on the intensity, duration, and frequency of said disturbance (Hartnett et al. 
2004). Aguilar Fernández et al. (2009) reported that controlled and moderate burn-
ing would not have a significant impact on mycorrhizal colonization. This would be 
the result of the low thermal conductivity in soil and the rapid combustion of 
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herbaceous vegetation (Aguilar Fernández et al. 2009). Ithurrart et al. (2018) ana-
lyzed the effects of controlled burning and defoliation on root morphology and 
AMF colonization levels in three species of native perennial grasses. The authors 
showed that defoliation after controlled burning did not affect the AMF coloniza-
tion. However, characters related to root morphology (as diameter and length) deter-
mined interspecific differences among the percentages obtained.

19.5  Conclusion

The analysis of the different scientific studies showed that AMF play a key role in 
the conservation of the natural grasslands of AAD. Considering that arid and semi-
arid environments are reservoirs of microorganisms adapted to live in extreme con-
ditions, future studies that promote the isolation and identification of AMF with 
biotechnological potential are important for the establishment of plant species and 
rehabilitation of degraded areas.

The use of forage resources must be carried out with caution to conserve the 
attributes and functional traits of Glomeromycota communities and ecosystem ser-
vices in the natural grassland of AAD (Fig. 19.3). Mycorrhizal colonization is ben-
eficial to recover photosynthetic tissue lost after moderate grazing and to promote 
compensatory growth of grass species (Fig. 19.3). Future research should identify 
Glomeromycota species that are effectively colonizing the roots and develop man-
agement practices aimed to maintain acceptable levels of AMF colonization in unfa-
vorable environmental conditions.

Fig. 19.3 Schematic of the ecological role of arbuscular mycorrhizal fungi (AMF Glomeromycota) 
in grasslands of the Argentine Arid Diagonal (AAD)
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20.1  Introduction

About 85% of vascular plant species establish relationships with arbuscular mycor-
rhizal fungi (AMF) (Jeffries et al. 2003; Brundrett 2009), existing in all biomes of 
the Earth (Soudzilovskaia et al. 2017), including 90% of agricultural plants (Finlay 
2008; Smith and Read 2008). Based on the above, AM constitute the most wide-
spread plant-microorganism association on the Earth’s surface (Smith and Read 
2008). Detailing, the AM association is present in a wide range of habitats, from 
hydromorphs to deserts, tropical forests, and even at high latitudes and altitudes 
(Casanova-Katny et al. 2011; Davison et al. 2015; Santander et al. 2021b). The AM 
symbiosis is crucial for nutrient absorption and cycling in woody species (Smith 
and Read 2008), as well as in carbon cycling (C) (Read and Pérez-Moreno 2003; 
Godbold et  al. 2006; Averill et  al. 2014), even constituting C transfer networks 
between different plants (Simard and Durall 2004). The role of AM in the acquisi-
tion, transport, and transfer of phosphorus (P) to plants is also well known (Smith 
and Read 2008), being the most frequent symbiosis in temperate and tropical eco-
systems (Acuña et al. 2020). In acidic soils, like most soils from central and south-
ern Chile, they are equally dominant, especially improving the acquisition of low 
available P forms (Urzúa et al. 1993; Seguel et al. 2017), as well as contributing to 
the resilience of plant communities. Moreover, the presence, richness, and abun-
dance of AM fungi are commonly used as indicators of ecosystem conservation 
(Castillo et al. 2006b; Torres-Mellado et al. 2012; Chávez et al. 2020).

In a context of climate change and anthropic alteration of the Earth’s surface, 
AM also provides an increase in the tolerance of plants to drought and various dis-
eases (Smith and Read 2008; Santander et al. 2017), while they can also improve the 
state of soils contaminated with phytotoxic elements such as aluminum (Al) (Seguel 
et al. 2013; Borie et al. 2019), copper (Cu) (Castañón-Silva et al. 2013), persistent 
organic compounds (Cornejo et al. 2013, 2017a), or heavy metals (Fuentes et al. 
2016b). Additionally, the AM symbiosis can modify the physiological processes of 
plants growing at low temperatures, through the synthesis of metabolites that pro-
mote water balance (Acuña et al. 2020), even providing benefits for plant growth in 
highly salinized environments (Santander et al. 2019a, b).

Despite the previous background constitutes an overview of the studies that have 
been conducted in different latitudes regarding the AM symbiosis, in Chile the stud-
ies related to this subject are relatively recent, although they have acquired notoriety 
for their multiple ecological relationships and the possible biotechnological appli-
cations that they can originate. Therefore, it is needed to systematize the existing 
information and organize it locally in terms of areas, thus allowing to identify infor-
mation gaps regarding the AM symbiosis. For this reason, this chapter aims to ana-
lyze the information on the distribution, functionality, and ecosystem role of AM 
symbiosis in Chile to identify study needs at the national level. We hope this sys-
tematization could serve as a starting point for highlighting the importance of inte-
grating the different uses of a territory in an ecological and sustainable way, 
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enhancing the natural characteristics of ecosystems in a framework of maximization 
of the provision of ecosystem services, where the AM is a key component.

To accomplish our aim, we performed a review of the scientific works in the 
bibliometric platforms Scopus, Web of Science, SciELO, and Google Scholar for 
AM-related studies associated with Chile as affiliation country. Then, the reports 
that were elaborated with experimental systems within the territory of Chile were 
selected, considering both native plant species and agricultural plants. This informa-
tion was systematized according to five geographical zones: (i) far north, (ii) near 
north, (iii) central Chile, (iv) south, and (v) far south, in addition to the interest of 
the study: (i) human-managed ecosystems or (ii) in natural ecosystems. Following, 
the studies were categorized according to the main focus: (i) phytotoxicity by pol-
lutants, (ii) plant growth and nutrition, (iii) water stress, (iv) factors affecting AM in 
agroecosystems, (v) factors affecting AM in natural ecosystems, (vi) role of AM in 
natural ecosystems, (vii) taxonomy of AM, (viii) salinity tolerance, (ix) fire effects, 
and (x) AM and genetics. Likewise, an analysis of the ecological role of the pres-
ence of MAs in the various ecosystems of Chile, both natural and modified by 
humans, was generated, revealing the importance of promoting the protection of 
natural ecosystems, as well as promoting the use of sustainable management in 
agricultural systems to improve their productive efficiency. Furthermore, for AMF 
taxa was followed the nomenclatural system of the Glomeromycota phylogeny page 
(http://www.amf-phylogeny.com/). Finally, we identified where the greatest research 
efforts are concentrated and where deficiencies are evident in, suggesting research 
areas to be covered in the future. The need to address these studies according to their 
applications to contribute to improving conditions of both natural and human- 
modified environments was highlighted.

20.2  Systematization of Studies Regarding the Arbuscular 
Mycorrhizal Fungi in Chile

By means of the above-described procedure, a total of 93 studies were found that 
consider the AM symbiosis in Chile, among which 49 are focused on an agronomic 
approach or alternatively oriented to propose solutions to problems derived from 
mining activities (soil pollution by potentially toxic elements). Other 38 are framed 
in the study of properties, functionality, and taxonomy of AMF in natural ecosys-
tems, finally corresponding the remaining 4 studies to a mix orientation of both 
interests. In terms of zonalization, 11 studies corresponded to the north zone, spe-
cifically 7 carried out in the far north, 4 in the near north, and 1 that includes both 
geographical areas since it covers a wide extension of sampling of several popula-
tions of the genus Atriplex. On the other hand, 21 studies correspond to central 
Chile; 58 were performed in the southern Chile, and only 2 were performed in the 
far south (Fig. 20.1).
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Fig. 20.1 Distribution by geographical macrozone and focus on the studies regarding to the arbus-
cular mycorrhizal symbiosis in Chile. Map author: P. Yates

20.2.1  Far North Zone

In this zone, considering the eight studies found, six of them included agricultural 
issues; other three describe the role of AM in plant growth and nutrition, while three 
others address the effect of AM symbiosis in salinity tolerance. Another study pre-
sented the distribution of AMF in natural ecosystems, and a recent report covers 
both the far and near north zones describing the function of AM symbioses in natu-
ral ecosystems.

20.2.1.1  Studies on Plant Growth and Nutrition

In relation to the effect of AMF on plant growth and nutrition, Santander and Olave 
(2012a, b, 2014) conducted studies on melon during the seedling stage, for evaluat-
ing the effect of the fungus Rhizophagus intraradices on the plant growth and 
precocity, evidencing earlier phenological changes in plants colonized by AMF. The 
inoculation with different doses of spores revealed that the optimal amount is 
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about 40 AMF spores per plant, despite the authors also tested inoculation with half 
and twice that amount. The optimal spore’s density produced a greater accumula-
tion of root biomass, stem diameter, and ratio between the dry weight of the root and 
the dry weight of the shoot. Likewise, the use of AMF also favored the tolerance to 
transplantation after the production on nursery conditions (Santander and Olave 
2012a, b). The authors also tested the co-inoculation of AMF and Trichoderma har-
zianum through co-inoculation, but no growth-promoting effect was observed; on the 
contrary a detrimental effect was observed by part of T. harzianum on the mycor-
rhizal colonization (Santander and Olave 2012a, 2014).

20.2.1.2  Studies on the Role of AMF in Salinity Tolerance

The three studies carried out to analyze the role of AMF under saline stress used 
lettuce (Lactuca sativa) as host plant, one of them using in two varieties of lettuce, 
“Grand Rapids” and “Lollo Bionda,” inoculated either with a consortium of AMF 
isolated from the Atacama Desert (Fig. 20.2) or with the fungus Claroideoglomus 
claroideum obtained from agricultural soils in the southern Chile. In this study, it 
was shown that the colonization by AMF allowed the modulation of saline stress in 
lettuce through changes in antioxidant enzyme systems that reduce oxidative dam-
age, favoring the plant growth (Santander et  al. 2019a). Additionally, Santander 
et al. (2021a) in a study with the same lettuce varieties inoculated with two AMF 
isolated from the Atacama Desert, Funneliformis mosseae and Claroideoglomus 
lamellosum, reported a greater AM colonization in lettuce roots at high levels of 
salinity (Fig. 20.2), which was shown to have implications at the morphogenetic 
level, regulating genes involved in the maintenance of the internal balance of K+/
Na+ concentrations and favoring the homeostasis through the accumulation of Na+ 
in vacuoles or their extrusion to the outside of root cells (Santander et al. 2021a). 
These results reinforced previous observations, which suggested that AMF struc-
tures, both in the soil and within the roots, can act as a biofilter preventing the entry 
of high concentrations of Na+ ions into the plant (Santander et al. 2019b). In this 
sense, the improvement in the growth of plants, their nutrition, and water capture 
allow to highlight the role of AMF adapted to conditions of high salinity, which 
ultimately can improve the conversion to a sustainable agriculture in saline soils 
when the AMF can be used as bioinoculants (Santander et al. 2021a).

20.2.1.3  AMF in Natural Ecosystems

A recent study reported the presence of AMF along three altitudinal belts in the 
Tarapacá Region (Atacama Desert), ranging from the hyperarid desert 
(700–2000  m  a.s.l.), the Prepuna (2000–3100  m  a.s.l.), and the Puna 
(3100–4500 m a.s.l.) (Fig. 20.3). Considering a total of 111 plant samples, all of 
them showed AM colonization or AM fungal structures in the rhizosphere, varying 
the colonization rates from 3.5% to 87%, and presenting in the rhizosphere of 
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Fig. 20.2 Obtaining of arbuscular mycorrhizal fungi (AMF) spores native from the Atacama 
Desert (a) Werneria pinnatifida in the “Salar de Huasco,” from which spores were isolated. (b) 
Native AMF spore isolated from W. pinnatifida. (c) Results obtained with the inoculation of the 
above AMF or the reference fungus Claroideoglomus claroideum in lettuce plants growing at 
increasing salt stress conditions (0, 40 and 80 mmol NaCl L−1). Photo’s credit: C. Santander

tamarugo (Prosopis tamarugo), Baccharis scandens, Werneria pinnatifida, Deyeuxia 
curvula, and Festuca deserticola the largest colonization rates (Santander et  al. 
2021b). Finally, in the study of Aguilera et al. (1998) in the far north, it was reported 
that although the genus Atriplex has been commonly recognized as non- microtrophic, 
Atriplex atacamensis, A. nummularia, and A. deserticola presented high levels of 
AMF spores in the rhizosphere soil, as well as high root colonization, both traits 
positive and significantly correlated with the level of available P in the soil. 
Additionally, a negative correlation with the N content. Contrary to the above, in the 
rhizosphere of A. repanda, a complete absence of AMF spores was found (Aguilera 
et al. 1998).
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Fig. 20.3 Elevation belts of the Tarapacá Region. (a) Hyperarid desert in the Pampa del Tamarugal, 
which is the driest nonpolar environment worldwide. (b) Prepuna, in the “Quebrada de 
Huatacondo”; (c) Puna, Bofedal in the “Salar de Huasco”. (d) and (e) Spores of AMF isolated from 
the rhizosphere of Baccharis scandens, plant species with distribution in the Prepuna from the far 
north in Chile. (f) SEM microphotograph of a spore obtained from “Salar de Coposa” associated 
to Festuca sp. roots, environment in the Puna with high salt contents. Photo’s credits: (a–c), 
P. Cornejo; (d–f), C. Santander

20.2.2  Near North Zone

The four studies that are framed in this area are mainly oriented to ecosystemic 
interests, studying the factors that affect the establishment of AMF in natural eco-
systems, the function of the AM symbiosis, and taxonomy of AMF species that have 
developed these interactions.
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20.2.2.1  Presence of AMF in Natural Ecosystems

Dhillion et al. (1995) presented one of the first reports regarding the AM status of 
annual and perennial plants in shrublands from the Coquimbo Region, finding that 
more than 90% of 38 species (into 19 plant families) formed exclusively AM asso-
ciations. In this study, it was also observed that plant species belonging to typically 
non-mycorrhizal families, such as Portulacaceae and Chenopodiaceae, do not 
develop the AM symbiosis, evidenced by the almost total absence of propagules and 
very low levels of AM root colonization. Additionally, in two studies conducted in 
the Fray Jorge Forest National Park, Aguilera (2004) investigated the presence of 
phytopathogenic microorganisms associated with the olivillo (Aextoxicon puncta-
tum) forest, finding that there is an inverse relationship between the number of phy-
topathogenic fungi and the AM root colonization. This may be due to the competition 
for nutrients and space that is generated, as well as the production of antimicrobials 
and enzymes that degrade microbial pathogenic cell walls (Green et  al. 1999). 
Based in the above, the use of AMF should be considered in the park’s restoration 
strategies, especially in forest reforestation programs with native species. On the 
other hand, Aguilera et al. (2016), in a 10-year study, found that rainfall is a deter-
mining factor in the abundance of AMF, being inversely proportional to soil mois-
ture, suggesting the role of AMF in improving the resilience of plant communities 
against environmental stresses, such as nutrient deficiency and drought (Barea et al. 
2011; Santander et al. 2017). In addition, the presence of small mammals was found 
to positively influence the AM colonization through spore dispersal, either by 
epizoocoria (transport of rhizosphere soil) or endozoocoria (root consumption) 
(Aguilera et al. 2016).

20.2.2.2  Role of AMF as Phytostabilizers

In a study on the phytostabilizing capacity of “romerillo” (Baccharis linearis) in 
soils affected by the accumulation of tailings, it was found that the AM root coloni-
zation improved the water retention capacity of the soil and allowed the develop-
ment of exploratory plant tissues, favoring the colonization and propagation of this 
species. However, an important factor that decreases the infectivity of the AMF 
propagules corresponded to high levels of Zn in tailings (Menares et al. 2017).

20.2.3  Central Zone

A total of 21 studies were found, of which 6 presented an agronomic interest, 11 
referred to ecosystemic topics, and another 4 covered both interests. Of all these, 
nine are related to environments contaminated with Cu, four referred to the factors 
that affect AMF in agroecosystems, three focused on the function of AMs in natural 
ecosystems, two analyzed the effect of AM in plant growth and nutrition, one 
addressed the role of AM in agroecosystems, one addresses the factors that affect 
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the MA presence in natural ecosystems, and only one referred to AMF taxonomy in 
natural ecosystems. It should be noted that the Chile’s central zone concentered 
85% of the horticultural activity, being the metropolitan region (27.5%), the main 
area devoted to this activity, followed by Maule Region (19.2%), O’Higgins Region 
(17.9%), Valparaíso Region (9.5%), and Bío Bío and Ñuble regions (5.6% each).

20.2.3.1  AMF in Plant Growth and Nutrition

In central Chile, a wide variety of vegetables is grown, such as the onion (Allium 
cepa), which has been proven with the inoculation of two commercial products 
containing AMF (Aegis® and Raizfort-M®), on the transinvernal variety Sonic, 
showing not significant increases in growth, yield, or quality of the crop. However, 
the author of this study pointed out that the use of AMF in those species should be 
studied in greater detail, in addition to monitoring the persistence of the fungus 
throughout the development of the crop and in conditions of nutritional stress (Díaz 
2004). Moreover, in tomato plants (Solanum lycopersicum), the co-inoculation of a 
consortium consisting of saprophytic fungi and Rhizophagus irregularis increased 
the growth of plants, synergistically improving the biochemical activity of the soil, 
being concluded that co-inoculation decreases plant stress by improving the defense 
systems and nutrient homeostasis (Fuentes et al. 2016b). A strategy to evaluate the 
influence of symbiosis between Rhizophagus irregularis and tomato plants was to 
select and probe reference genes, which will depend on the tissue under study and 
the conditions of experimentation (Fuentes et al. 2016a).

Regarding the wine industry, a large part of the national production is located in 
the central zone, whose tradition dates back to the sixteenth century, and there are 
currently many commercial varieties that generate different types of wine (Aguilar 
and Becerra 2017). In detail, a study in vineyards under different agricultural man-
agement reported that the greatest diversity of AMF was found in those of organic 
management, also evidencing that this symbiosis modifies and increases the con-
centration of secondary metabolites (Aguilar and Becerra 2017), which is important 
for its possible implications in the terroir. Additionally, other studies in vineyards 
of the Cabernet Sauvignon variety inoculated with the commercial inoculant 
Mycosym Tri-ton® reported increases in the percentage of root growth at the sec-
ond year, suggesting that AMF populations increase year by year if the appropriate 
conditions are present, such as minimal disturbances in the soil, low application of 
synthetic phytosanitary products, and adequate fertilization, among others 
(Bennewitz et al. 2008).

20.2.3.2  Factors Affecting AM Symbiosis in Agroecosystems

In reference to soil tillage strategies, ploughing is still widely used, which can 
adversely affect soil properties, microbiological characteristics, the presence and 
activity of AMF, the structure of biotic communities and the production of glomalin, 
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thus affecting the function of the soil as a sink of C (Cornejo et al. 2009; Curaqueo 
et al. 2010, 2011; Ávila-Salem et al. 2020). In relation to the above, Curaqueo et al. 
(2010, 2011) pointed out the crucial role of AMF and glomalin in soil aggregation 
processes, contributing to the stability of organic matter in a Mollisol from the 
Metropolitan Region. A 6-year study in a wheat-corn rotation crop showed that no- 
till produced higher densities of AM hyphae, glomalin, and water-stable soil aggre-
gates, increasing by 44% the total C in the soil compared to the amounts accumulated 
in soils subjected to conventional tillage (Curaqueo et al. 2010). Likewise, Curaqueo 
et al. (2011) highlighted that in the long-term soil compaction under zero-tillage 
systems causes a detriment to several of its properties, negatively influencing crop 
production in annual rotations. Therefore, they suggest carrying out studies in 
greater depth to establish the situations in which tillage is necessary in soils of 
medium and coarse texture after some years under no-tillage system.

20.2.3.3  AMF in Copper-Contaminated Environments

It is well-known that in Chile the mining activity generates large amounts of toxic 
wastes that can contaminate the soils, even affecting the quality of those surround-
ing mining activities, which are characterized by high concentrations of potentially 
toxic elements (PTE) such as Cu (Cornejo et al. 2008a; Castañón-Silva et al. 2013; 
Ávila et  al. 2010) (Fig. 20.4). Cu is an essential micronutrient for the growth of 
plants and soil microorganisms, but when found in excess, it can be highly toxic 
(Cuillel 2009; Vidal et al. 2020, 2021). Several studies have demonstrated the ability 
of AMF to alleviate toxicity against this element in plants, such as the compartmen-
talization of excess Cu in the cytoplasm of fungal spores (Fig.  20.4), which are 
metabolically inactivated, thus serving as a survival mechanism of AMF in environ-
ments contaminated by Cu (Cornejo et  al. 2013). Other mechanisms of AMF to 
cope against the Cu toxicity correspond to the generation and accumulation of glo-
malin in the soil, which can sequester various PTE, such as Cu and Zn, also contrib-
uting to the stabilization of highly contaminated soils (Cornejo et  al. 2008a, 
2017a, b).

Some plant species have shown the capability to store high amounts of Cu in 
their structures, such as the sunflower (Helianthus annuus). This plant can also 
accumulate Cd, Ni, Cu, Zn, Pb, and radioisotopes in its roots, being observed that 
when inoculated with AMF from the genus Glomus enhanced its growth (height and 
biomass), also contributing to the accumulation of Cu in the shoots, which favors 
the processes of soil recovery through phytoextraction (Castañón-Silva et al. 2013; 
Meier et al. 2012a).

Additionally, some plant populations have naturally generated tolerance mecha-
nisms against the presence of PTE in the soil, which are known as metallophytes. 
Among them are Oenothera picensis and Imperata cylindrica, plant species which 
grow spontaneously in metal-contaminated soils in central Chile (Meier et  al. 
2012b). In a study where the effect of inoculation of a consortium of AMF adapted 
to Cu was compared with a fungus that presumably did not present tolerance 
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Fig. 20.4 Mediterranean ecosystem of the central zone of Chile. (a) Mediterranean scrub in the 
vicinity of CODELCO’s Ventanas Refinery where is visible the industrial installations. (b) 
Pronounced soil degradation that has generated a noticeable gully erosion. (c) Specimen of 
Baccharis linearis (Asteraceae), typical scrub AM host present in a wide range in the Mediterranean 
degraded shrublands of central Chile. (d) Lawn of Imperata cylindrica (Poaceae), where a speci-
men of Oenothera picensis (Onagraceae) is established. (e) AMF spore’s diversity obtained from 
rhizosphere soil of B. linearis growing in soils Cu contaminated. (f) Spores of Claroideoglomus 
claroideum obtained from Cu-contaminated soils, where is evident the accumulation of Cu salts. 
Photo’s credit: P. Cornejo

(Claroideoglomus claroideum), in plants of O. picensis, I. cylindrica, and sunflower, 
it was observed that C. claroideum provided better results in terms of plant estab-
lishment and growth, so it may be useful for implementing phytostabilization pro-
grams (Meier et al. 2012a). This is interesting given that microorganisms isolated 
from contaminated soils are commonly considered to have a better degree of toler-
ance when compared to other organisms isolated from non-limiting conditions. 
Another study indicates that high concentrations of Cu in the soil generate an 
increase in radical exudation, which may serve as a mechanism for plants to settle 
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in sites with high concentrations of this element, among which I. cylindrica pre-
sented the best response given its great capacity for citric acid exudation (Meier 
et al. 2012b). Additionally, Cornejo et al. (2017b) observed that the use of O. picen-
sis together with C. claroideum is an optimal alternative to carry out the phytostabi-
lization of Cu in contaminated soils.

In addition to AMF inoculation, other alternatives to promote plant growth in 
Cu-contaminated environments are the use of organic amendments to increase the 
efficiency of phytostabilization programs. One of these alternatives corresponds to 
the addition of agricultural wastes, such as sugar beet wastes in conjunction with the 
inoculation of AMF adapted to Cu. In a study using the aforementioned materials, 
it was observed that the interaction of both technologies allowed a better establish-
ment of O. picensis seedlings under high concentrations of Cu in the soil, mainly 
due to the increase in root colonization (Meier et al. 2011, 2015). Therefore, it is 
relevant to highlight that the use of native AMFs extracted directly from soils with 
high concentrations of Cu may have a significant advantage in the establishment of 
seedlings, compared to the inoculation of AMF that do not have tolerance to this 
element (Medina et al. 2015). Additionally, the incorporation of compost also con-
tributes to improving the response of O. picensis plants inoculated with AMF when 
growing in Cu-mining tailings, decreasing Cu bioavailability and promoting the 
production of photosynthetic pigments, which finally generate notable increases in 
plant growth (Pérez et al. 2021). Finally, other studies highlighted that, in addition 
to inoculation with AMF in O. picensis plants, the addition of biochar contributes to 
decrease the Cu bioavailability, which generates the decrease of Cu concentrations 
in the plant while generating improvements in the rhizospheric environment for soil 
microorganisms and plant growth, suggesting the use of this input to sustainably 
improve bioremediation of Cu-contaminated soils (Meier et al. 2017).

20.2.3.4  Factors Affecting AM Symbiosis in Natural Ecosystems

Central Chile is the only area in South America which presents a Mediterranean- 
type ecosystem, which is usually known as “Matorral Chileno,” an important biodi-
versity hotspot that hosts a large number of endemic species, many of which are 
seriously threatened by anthropic action (Myers et al. 2000). A study conducted in 
the O’Higgins Region in two sclerophyllous forests reported that in the forest domi-
nated by “boldo” (Peumus boldus), “litre” (Lithraea caustica), “bollén” (Kageneckia 
oblonga), and “corontillo” (Escallonia pulverulenta), clay content and electrical 
conductivity correlated positively with AMF spore density, while P availability 
showed a negative correlation. On the other hand, in the forest dominated by boldo, 
litre, “quillay” (Quillaja saponaria), and “peumo” (Cryptocarya alba), the clay 
content and the total N were positively correlated with the density of AMF spores, 
while the soil organic matter showed a negative correlation (Silva-Flores et  al. 
2019). In both sites higher densities of AMF spores were found in the growing sea-
son (spring-summer-autumn), while their lower density was recorded in winter, 
indicating a high regulation of AMF spores as an effect of seasonality. This is the 
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first analysis of the factors influencing the abundance of AMF spores in the Chilean 
matorral (Silva-Flores et  al. 2019). On the other hand, Benedetti et  al. (2018) 
described the species of AMF present in natural boldo formations, identifying a 
total of 23 species belonging to Acaulosporaceae (Acaulospora), Entrophosporaceae 
(Entrophospora), Glomeraceae (Funneliformis, Glomus, Rhizophagus, and 
Sclerocystis), and Paraglomeraceae (Paraglomus aff. laccatum), highlighting the 
presence of Funneliformis badius and F. constrictus in all the sites studied, species 
that are generally rare.

20.2.3.5  Role of AMF in Natural and Modified Ecosystems

A study conducted under controlled greenhouse conditions with six commercial 
AMF inoculants (Gigaspora margarita, R. fasciculatus, R. intraradices, R. aggre-
gatus, G. versiforme, and Funneliformis monosporus) in red eucalyptus (Eucalyptus 
camaldulensis) and quillay showed that F. monosporus generated the highest num-
ber of viable spores along with G. versiforme and R. aggregatus, presenting R. fas-
ciculatus the lowest viability (Godoy et  al. 1991). Additionally, Gi. margarita 
responded with a low presence in both plant species. In the case of red eucalyptus, 
the AMF with the greatest effect on the variables considered were G. versiforme and 
R. intraradices, while in the case of quillay the fungal species with the greatest 
effects were R. intraradices and R. aggregatus. Another family of AM-forming 
plants present in the Mediterranean area associated with tree species, such as peumo, 
quillay, and boldo, corresponds to Gilliesieae (Torres-Mellado et al. 2012). The five 
known genera of this family, Gethyum, Gilliesia, Miersia, Solaria, and Speea, show 
common presence of AM, being the only form of fungal symbiosis present in this 
group and varying the presence of fungal structures such as arbuscules, vesicles, 
intraradical hyphae, or coils depending on the species in question (Torres-Mellado 
et al. 2012).

Another study carried out in the central zone investigated the presence of AMF 
associated with cushion growth plants, such as the “yareta” (Azorella madreporica), 
which facilitates the establishment of herbs and pastures on them by generating bet-
ter conditions of humidity and nutrients under the soil in which these nurses are 
located (Cavieres et al. 2005, 2018). In this study it was found that about 65% of 
plant species growing above 3000 meters in height have AM-colonized roots, con-
firming other observations that AMFs can accompany their symbionts without an 
altitudinal limit (Casanova-Katny et  al. 2011; Oehl et  al. 2006, 2011; Santander 
et al. 2021b). The absence of AM was also found in species whose families do com-
monly present these structures, such as Chaetanthera lycopodioides and Perezia 
carthamoides (Asteraceae) and Viola philippii (Violaceae). Moreover, the results of 
the study confirm that yareta cushions promote the development of dense networks 
of AMF, compared to plants that do not lodge on them, which may be an essential 
factor contributing to the diversity of species and the structure of the plant cover 
mediated by the presence of yareta (Casanova-Katny et al. 2011).
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20.2.4  South Zone

The vast majority of studies involving AMF have been developed in this area, espe-
cially in soils used for agricultural production, being equally important the work in 
natural ecosystems. In detail, of the 58 studies corresponding to this zone, 15 were 
focused in plant growth and nutrition, 14 were oriented to aluminum phytotoxicity, 
11 included factors that affect the functioning of AM in agroecosystems, 6 described 
the function of AM in natural ecosystems, 5 addressed the taxonomy of AMF in 
natural ecosystems, 2 investigate the factors that affect AM in natural ecosystems, 2 
referred to the impact of fires on MAs, 1 related the interactions between Al and P, 
1 included aspects related to Cu phytotoxicity, and, finally, 1 referred to the role of 
AM in water stress.

In Chile, more than 50% of the arable soils have been originated from volcanic 
ash, predominating in the south the Andisol and Ultisol orders that, despite their 
many edaphic-climatic advantages, present limitations for plant growth. These 
include low pH, high P-fixing capacity, high levels of organic matter with varying 
levels of humification, and, in some cases, phytotoxicity by Al and Mn due to fre-
quent acidity (Borie et al. 1998, 2019; Borie and Rubio 1999). Therefore, the use of 
AMF propagules is essential in conjunction with appropriate management prac-
tices, which can maximize the effects of MA symbiosis on plant establishment, 
nutrition, and growth (Borie et al. 2010, 2019).

20.2.4.1  Plant Growth and Nutrition

In the early 1990s, the first studies on AM emerged, identifying their presence in 
legumes and grasses, and concluding that the former develop higher levels of colo-
nization, in this case comparing white clover (Trifolium repens) and ryegrass 
(Lolium perenne) (Urzúa et al. 1992). Another study conducted by the same authors 
using white clover found that inoculation with AMF produced an increase in bio-
mass production due to a better P nutrition, as well as an increase in the absorption 
of other nutrients such as K, Ca, Mg, Zn, Cu, Fe, and Mn (Urzúa et  al. 1993). 
Likewise, other more recent studies showed that both AM root colonization and 
phosphatase activity are complementary mechanisms used by the plant to generate 
a better P availability and uptake (Castillo et al. 2008b), which is of great impor-
tance due to its low availability in volcanic soils from southern Chile, as previously 
mentioned.

In other studies, the joint inoculation of Claroideoglomus claroideum with native 
strains of selenobacteria generated a synergistic effect reflected as an increased 
uptake of selenium (Se) in wheat that allowed its accumulation in grains, thus con-
stituting a sustainable alternative to improve the Se biofortification of cereals (Durán 
et al. 2013). A more recent study in which a consortium of endophytic bacteria was 
inoculated together with the fungus C. claroideum confirmed the viability of its use 
as a biofortification strategy of Se in wheat, by producing greater effective 
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colonization of roots, better antioxidant activity, and the increase of the content of 
Se in the grain (Durán et al. 2018). On the other hand, the inoculation of Rhizophagus 
intraradices in wheat cultivars has been shown to increase the accumulation of Ca, 
generating a greater exudation of organic acids in the rhizosphere compared to the 
inoculation with C. claroideum, evidenced in the host plant as an increase in the P 
content (de Souza Campos et  al. 2021). Additionally, a study on the nutritional 
properties and effect on strawberry growth (Fragaria x ananassa) reported that the 
inoculation with the fungus C. claroideum increased the antioxidant capacity in the 
fruits (Parada et al. 2018). In addition, in the same study, Parada et al. (2018) found 
that the roots of strawberry plants exuded important quantities of oxalic acid, which 
may be an effective mechanism to exclude phytotoxic Al, which in conjunction with 
the use of AMF can increase the plant P uptake in P-deficient acidic soilsient. This 
study stressed the need to investigate in depth the effects of the use of AMF in straw-
berry crop, since the functionality of the AM symbiosis could become more evident 
in the second or third year of cultivation.

Considering other plant hosts, it has been shown an increase in the production of 
coriander (Coriandrum sativum), parsley (Petroselinum hortense), and chili pepper 
(Capsicum annuum) with the inoculation with Glomus sp. and Claroideoglomus 
etunicatum, by 70%, 200%, and 400%, respectively (Borie et al. 1997). Similarly, 
Borie et al. (1998) reported that in volcanic soils the inoculation with C. etunicatum 
produced a significant increase in biomass by ten wheat cultivars, highlighting eight 
of these that proved to be significantly dependent on the symbiosis generated by 
indigenous AMF populations. Finally, the inoculation with AMF has shown to be 
beneficial even in species not commonly recognized as AM plant hosts, such as 
blueberry (Vaccinium corymbosum), where its inoculation produced an increase in 
biomass in the early stages of plant growth. Likewise, the inoculation with the sap-
robe fungus Coriolopsis rigida increased the colonization of Gigaspora rosea and 
R. intraradices, and in addition the saprophyte fungus Phanerochaete chrysospo-
rium produced a synergistic increase in the root colonization with the fungus G. vis-
cosum, evidencing a mutualistic interaction between AMF and saprophytic fungi, 
which can be used as a biotechnological tool to improve the adaptation of blueberry 
plants in their acclimatization phase after the nursery production (Arriagada 
et al. 2012).

20.2.4.2  Protective Role of AMF Against Phytotoxicity

The largest area of cereal crops in Chile, such as oat (Avena sativa), wheat (Triticum 
sp.), and barley (Hordeum vulgare), is located on volcanic soils, characterized by 
high levels of exchangeable Al, which negatively affects plant production (Aguilera 
et al. 2014, 2018). To address this problem, the use of different wheat cultivars with 
greater tolerance to Al has been implemented (Seguel et al. 2014), as well as the 
application of lime to reduce their phytotoxicity, although treatments with AMF 
turn out to be the most efficient (Borie and Rubio 1999). Even so, the application of 
liming materials, such as CaCO3 and CaMg(CO3)2, reduces the phytotoxicity of Al 
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favoring the establishment of the AM symbiosis and the persistence in the soil of the 
AMF propagules (Mendoza 1997). The mechanism by which AMF facilitate the 
establishment of crops in acidic soils is through their ability to sequester Al in the 
structures of the fungus, such as glomalin and hyphae, thus preventing the Al trans-
location by roots toward the shoots (Seguel et  al. 2016, 2019; Mendoza 1997; 
Aguilera et al. 2018), generating the immobilization of Al (Aguilera et al. 2011).

It is important to consider that AM root colonization is relevant from the initial 
crop stages, evidencing a greater colonization in the varieties that have a greater Al 
tolerance, as reported by a study where different varieties of barley and wheat were 
used (Seguel et al. 2012), observing a greater plant biomass, P acquisition, and acid 
phosphatase activity in the soil cultivated with Al-tolerant wheat genotypes (Seguel 
et al. 2017). On the other hand, Al-sensitive wheat genotypes showed a higher con-
centration of Al in stems and roots (Seguel et al. 2017). In general, Seguel et al. 
(2017) suggest that Al tolerance is a combination of factors, among which the 
plant’s own ability to tolerate the element, the efficiency in the P uptake, the exuda-
tion of chelating compounds by the root, and the AM colonization work together to 
overcome these adverse conditions typical of acidic soils. Finally, Marín et  al. 
(2016) suggested that some AMF species may be more adapted to very high levels 
of Al saturation, as well as extremely low amounts of available P.

On the other hand, the structure of the AMF communities varies even according 
to the genotype within the same plant species, implying a richness of AMF species 
particular to each variety, which can influence the effectiveness of the inoculation 
with AMF (Aguilera et  al. 2014; Seguel et  al. 2016). This differential degree of 
functional compatibility has also been described for different cereal species 
(Aguilera et  al. 2017) or even in species of other plant families, such as clover 
(Trifolium sp.) in the case of legumes (Castillo 1997; Castillo et al. 2008a). In the 
same way, Seguel et al. (2016) stated that the application of AMF inocula can con-
tribute to the Al tolerance of crops located in acidic soils only in some wheat variet-
ies, in particular those less tolerant to this element.

Another study referring to the growth of white eucalyptus (Eucalyptus globulus) 
in soils amended with biosolids with high Al levels showed a higher growth of 
plants inoculated with the AMF Rhizophagus irregularis, the saprophytic fungi 
Coriolopsis rigida, and Phanerochaete chrysosporium or a combination of both 
treatments, increasing the concentration of P and the biomass of the stems (Arriagada 
et  al. 2013). In conjunction with the AMF inoculation, the addition of lupine or 
wheat residues demonstrated the reduction in the absorption of Zn, Cu, Mn, and Al 
by AM-colonized plants, highlighting the importance of the use of AMF as the main 
element to treat toxicity problems in acidic soils (Borie et al. 2002). On the other 
hand, a study related to the establishment of white eucalyptus in soils with high Cu 
levels showed an increase in the tolerance of the plant against this element once 
inoculated with the AMF Septoglomus deserticola and the saprobe fungus 
Coriolopsis rigida, so the authors recommend this combination for phytoremedia-
tion practices. However, this same study recognizes the detrimental effect of Cu on 
AMF, causing a decrease in the growth of extraradical mycelium (Arriagada 
et al. 2009).
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20.2.4.3  Factors Affecting AMF in Agroecosystems

Several studies in Chile have shown how agricultural practices, such as tillage, rota-
tion designs, and quantity and type of fertilizer, can affect the AM functionality, as 
well as spores’ density, mycelium, and colonized roots (Borie et al. 2010). In par-
ticular, tillage affects the physical and chemical structure of the soil in which micro-
organisms coexist, affecting their abundance, diversity, and activity (Borie et  al. 
2006; Cornejo et  al. 2009). Several studies showed that no-tillage significantly 
induced a higher AM root colonization than conventional tillage and there are also 
higher values of AMF spores under this type of soil management (Borie et al. 2006; 
Castillo et al. 2006a). No-tillage and reduced tillage also improved the accumula-
tion of glomalin, which even increases over time. With these antecedents, it is con-
cluded that reduced tillage positively influences the vast majority of soil 
characteristics, including higher levels of C, N, S, total P, and pH, increasing the 
acquisition of P for the next crop in rotation systems (Castillo et al. 2006a; Borie 
et al. 2000). Consequently, more conservationist practices are associated with higher 
densities of active AMF mycelium and colonized roots, which has been observed in 
rotations with wheat and oats (Cornejo et al. 2009).

Another practice that improves the presence and activity of AMF is the applica-
tion of compost, a common agricultural management among small farmers from 
central and southern Chile. The application of this material increases the pH, the 
density of AM-colonized roots, the length of the mycelium, the levels of glomalin, 
the water-stable aggregates, and the water holding capacity, being recognized as a 
substitute to chemical fertilizers, in addition to contributing to avoid soil erosion in 
organic production systems (Valarini et al. 2009). Likewise, the addition of plant 
residues in acidic andisols increases the pH level, the P availability, and the develop-
ment of AMs, as well as the growth of plants and the acquisition of minerals (Borie 
et al. 2002; Lara et al. 2004; Redel et al. 2006). There has also been evidenced a 
greater AM colonization in host crops such as maize (Zea mays), bean (Phaseolus 
vulgaris), and prairie constituent species (grasses and legumes), which in turn 
increases biomass and nutrient availability in the soil (Millaleo et  al. 2006). 
Additionally, the incorporation of lupine plant residues in crops also enhances 
mycorrhization, with increases of 49 to 61% in wheat roots (Redel et al. 2006). 
In this sense, in another study that considered the application of plant residues incu-
bated with Trichoderma harzianum and Coriolopsis rigida, together with biosolids 
in a tomato crop inoculated with the AMF Rhizophagus irregularis, it was observed 
that C. rigida inhibits the positive interaction between AMF and organic residues in 
plant growth. On the contrary, plant residues incubated with T. harzianum and added 
to mycorrhizal plants evidenced the greater production of shoot biomass (Almonacid 
et al. 2015).

Regarding the fertilization of soils with nitrogen sources, a study that investi-
gated the interaction between nitric (NO3

−) and ammonia sources (NH4
+) together 

with the inoculation of the fungus Claroideoglomus etunicatum showed that the 
length of mycorrhizal roots of wheat plants increased with the use of NO3

−, also 
improving the density of extraradical mycelium and the number of spores in the 
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rhizosphere (Cornejo et al. 2007, 2008b). With the use of C. etunicatum, a higher 
rate of specific absorption of P and Zn was also evidenced, specifically with the use 
of NH4

+ as the nitrogen source. On the other hand, considering the use of NO3
− and 

the same inoculum of AMF, a greater accumulation in shoots of N, K, and Cu was 
evidenced, also decreasing the accumulation of Al and Mn (Cornejo et al. 2008b). 
Likewise, Cornejo et al. (2009) identified that the use of NH4

+ as fertilizer was asso-
ciated with a higher density of AMF hyphae, although the use of NO3

− was associ-
ated with a greater alkalinization of the rhizosphere, as well as a higher density of 
AMF propagules in wheat beyond postharvest stages, which may facilitate coloni-
zation by AMF in early stages in the next crop within the rotation.

In another study, Durán (2007) compared eight ecotypes of wheat from small 
Mapuche farmers with respect to a commercial variety, evidencing in the former a 
significantly higher AM colonization and a greater global microbial activity in the 
state of pasty grain, presenting greater shoot and root biomass in the different phe-
nological stages studied. Additionally, a comparative study of inoculation of a com-
mercial AM fungus (R. intraradices) and another native (C. claroideum) in  local 
ecotypes of chili pepper (Capsicum annuum) variety “cacho de cabra” from 
Mapuche farmers demonstrated a marked effectiveness of the native strain in con-
trast to the commercial one, by reducing the stress by transplantation thus accelerat-
ing the ripening stage and producing fruits of better quality (Castillo et al. 2009). 
Previous studies showed that plant-AMF interactions related to nutritional dynam-
ics are highly influenced by the species of fungus that is colonizing the root, as well 
as intraspecific variations at the genetic level of the host, while growth responses 
related to nutrition depend on the intrinsic capacity of acquisition efficiency of these 
nutrients by the plant (de Souza Campos et al. 2021).

In oat, wheat, and barley crops, in the first stage of growth after sowing, Castillo 
et al. (2012) observed that the intensity of AM colonization is low at 15 days, which 
increases slightly in the period of 15–30 days, increasing markedly between 30 and 
45 days, which also evidences a high production of biomass in the roots until day 
30, which remains constant until the 45th day. With this, the authors conclude that 
in the early stages of growth, the cereals invest energy in root production and then 
in the production of biomass for the growth of AMF. Finally, a study on various spe-
cies of forage lotus in samples of andisols and vertisols showed that AM coloniza-
tion was lower in the latter, increasing in all cases the AM colonization with low 
levels of P in the soil (Castillo et al. 2013).

20.2.4.4  Presence and Role of AMF in Natural Ecosystems

With regard to natural ecosystems, the native flora from southern Chile has about 84 
tree species with 50% endemism of great genetic, phytogeographic, and ecological 
significance (Armesto 1992). The exploitation of renewable terrestrial natural 
resources, which involve the extraction of tree cover, erodes the soil and causes 
imbalances at the ecosystem level (Godoy et al. 1994), being especially fragile the 
endemic conifers from southern Chile, several of which are limited to small 
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distribution areas, so many of them have a relictual character (Golte 1978). Godoy 
(1989) documented for the first time the presence of AM in the species of conifers 
“araucaria” (Araucaria araucana), “ciprés de la cordillera” (Austrocedrus chilen-
sis), larch (Fitzroya cupressoides), “ciprés de las Guaytecas” (Pilgerodendron 
uviferum), “ciprés enano” (Dacrydium fonckii), “mañío macho” (Podocarpus nubi-
genus), “mañío de hoja larga” (Podocarpus salignus), “lleuque” or “uva de la cor-
dillera” (Prumnopitys andina), and “mañío de hoja corta” (Saxegothaea conspicua).

Several studies have delved into the relationship between araucaria and AMFs, 
since they are located in areas exposed to different natural events such as wind, 
volcanism, fires, and low rainfall, which have been accentuated as a result of climate 
change, in addition to adverse physicochemical characteristics of the soil; however, 
they have demonstrated a great capacity for adaptation (Chávez and Rivas 2020). 
Given the above, an important strategy that has allowed the resilience of araucaria 
forests is the symbiosis with AMF (Cartes 2008), in which it has been recognized 
that 90% of the mycorrhizal associations of vascular plants in these forests corre-
spond to the AM type. Even so, AMF communities are prone to being altered by 
fire, and after a fire event, species of the genera Archaeospora, Acaulospora, and 
Gigospora have been shown to be the most representative (Paulino 2006). However, 
over the years after a fire event, the production of glomalin is maintained, which 
could respond to an ecological-evolutionary strategy of symbiosis in this type of 
temperate forests, being key in the recovery and restoration of degraded ecosystems 
(Rivas et al. 2016; Chávez et al. 2020). In this sense, Chávez et al. (2020) showed 
that the levels of glomalin of a soil are a good indicator of the conservation status of 
araucaria forests, identifying that among various sites where this species is located, 
the best state of conservation is presented in the Nahuelbuta National Park, com-
pared to the Conguillío National Park, Tolhuaca National Park, and the China 
Muerta National Reserve. On the other hand, a study of inoculation with AMF and 
endophytic fungi (HE) in araucaria concluded that the inoculation of AMF alone or 
in interaction with HE is beneficial for the seedlings of this species, even improving 
the ability to tolerate prolonged drought, maintaining stable physiological variables 
such as photosynthesis, CO2 assimilation, and foliar water content (Chávez and 
Rivas 2020).

Another study in araucaria carried out in three forested communities of the La 
Araucanía region, two sectors in the Cordillera de la Costa, Villa Las Araucarias and 
PN Nahuelbuta, and one sector in the Conguillío National Park in the Cordillera de 
Los Andes (Fig. 20.5), showed that in the latter there was a more acidic pH, in con-
junction with a greater number of AMF propagules and the greater number of 
spores, although this does not necessarily ensure a greater and better colonization 
since it also depends on the efficiency of the AMF that colonizes the root (Cartes 
2008). Additionally, Godoy et al. (1994) showed that inoculation in araucaria with 
Rhizophagus intraradices obtained positive results in the growth of seedlings, being 
also the first study that identified the mycotrophic status of the vascular flora present 
in four forested communities of native conifers from southern Chile, among which 
highlighted the araucaria forests, ciprés de la cordillera, larch, and ciprés de las 
Guaytecas. Among the 83 vascular species investigated, 61 presented AM 
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Fig. 20.5 Araucaria araucana trees in different states of conservation. (a) Good state of conserva-
tion in Nahuelbuta National Park. (b) Araucaria trees in Tolhuaca National Park after fire in the 
summer 2001–2002. (c) China Muerta National Reserve after fire 2015. (d) and (e) Root coloniza-
tion by AMF forming profuse coils with the intraradical mycelium. (f) to (i) Different AMF spores 
isolated from rhizosphere soils of Araucaria. (Photo’s credits: (a–c), P. Cornejo; (d–i), D. Chávez)

associations, between them were present species belonging to the genera Baccharis, 
Berberis, Adesmia, Chusquea, Gaultheria, Senecio, Pernettya, and Blechnum and 
the tree species Drimys winteri, Fitzroya cupressoides, and Maytenus magellanica, 
among others (Godoy et al. 1994).

Communities of AMF have also been recognized in forests of the “lenga” tree 
species (Nothofagus pumilio), among which the species of the genus Acaulospora 
are the most abundant (Marín et al. 2016). Among some edaphic traits determining 
the establishment of AMF, the pH, P, and Al saturation were identified. Regarding 
the latter, A. laevis and A. punctata were the most abundant in soils with high per-
centages of Al saturation, with values close to 70%. On the other hand, the species 
F. badius and R. invermaius were identified as potential pioneers in the successions 
of disturbed habitats, especially in poor-nutrient environments (Marín et al. 2016).
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In evergreen forest ecosystems, it has been reported that of 53 plant species ana-
lyzed, 77.4% formed the AM symbiosis (Castillo et al. 2006b). Likewise, of the 18 
tree species studied, 12 presented AMs: olivillo, “luma” (Amomyrtus luma), “meli” 
(Amomyrtus meli), “ulmo” (Eucryphia cordifolia), “tepa” (Laureliopsis philippi-
ana), myrtle (Luma apiculata), “chilco” (Fuchsia magellanica), and “maqui” 
(Aristotelia chilensis) also ferns such as Blechnum hastatum, B. blechnoides and 
B. chilense. In comparison, a secondary deciduous forest ecosystem presented the 
lowest number of AMF spores and diversity, compared to an evergreen forest eco-
system and a prairie ecosystem. On the latter, more than 90% of the species were 
identified as AM hosts (Castillo et al. 2006b). A total of 39 species of the division 
Glomeromycota were found in this study, predominating species of the genera 
Acaulospora and Glomus in the forest ecosystems and Acaulospora in the prairie 
ecosystem. Also, the presence of arbuscules, vesicles, and hyphae in the root system 
of “chacay” (Discaria serratifolia) was verified, as well as the appearance of AMF 
propagules in the rhizosphere soil (Salinas and Carrillo 2008).

On the other hand, Seguel et al. (2008) studying an adult mixed forest of olivillo, 
ulmo, “roble” (Nothofagus obliqua), “laurel” (Laurelia sempervirens), and “lingue” 
(Persea lingue) belonging to the forest type “Roble-Raulí-Coigüe” determined the 
contribution of glomalin as a sink of C in the soil, finding that the C associated with 
this glycoprotein represents between 8.9 and 10.4% of the total C of the surface 
horizon, as well as a high correlation between soil organic C and C glomalin. In 
addition, despite the ecosystem is dominated preferentially by ectomycorrhizae, the 
soil showed a high amount of AMF propagules, especially spores, which closely 
correlated with the levels of glomalin deposited in the soil (Seguel et al. 2008). In 
this sense, Etcheverría et al. (2009) studied the factors that contribute to the enrich-
ment of 13C and 15N in the soil organic matter of native forests in different degrees 
of preservation. As a result, glomalin was found to contribute significantly to such 
enrichment. The authors also emphasize that, although the mechanisms by which 
this process occurs must be deepened, it is likely that this isotopic enrichment is due 
to the internal fractionation of the AMF during the capture and transport of C and N, 
thus concentrating 13C and 15N as part of the AMF biomass (Etcheverría et al. 2009).

Among some factors that determine the variable presence of AMF communities 
in prairie ecosystems highlight the climate and the regulation by plant species 
(Montero et al. 2013), implying variations in herbaceous communities between the 
different seasons in the annual cycle and in the communities of non-mycorrhizal 
microorganisms in the soil. On the other hand, Oehl et al. (2011) described the mor-
phology of the spores and the taxonomic and genetic-molecular phylogeny of a new 
species into the genus Acaulospora (Ac. punctata), present both in the Swiss Alps 
and in the Andes Mountains, in Los Ríos Region. Likewise, Medina et al. (2014) 
presented the description of a new species belonging to the order Glomeromycota, 
Corymbiglomus pacificum, the first species of the genus of which direct germina-
tion has been observed from the cell wall, which was isolated from the mouth of 
Lake Budi, inhabiting the rhizosphere of Ammophila arenaria, highlighting in the 
area the periodic salinity given its proximity to the Pacific Ocean. Finally, Medina 
et al. (2015) conducted a study on the AM status of pioneer plants in Lake Budi, 
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both in roots and rhizosphere of Polygonum maritimum, Carpobrotus chilensis, 
Ambrosia chamissonis, and A. arenaria, the latter presenting the greatest AM root 
colonization. Likewise, a low richness of AMF species was found, predominating 
the association of Corymbiglomus pacificum and A. arenaria, suggesting an impor-
tant role of AMF in its establishment, as well as the establishment of Amb. chamis-
sonis in saline ecosystems, being relevant the potential use of AMF as a 
biotechnological tool for the stabilization of coastal ecosystems, dunaria, or plants 
growing under conditions of salinity or drought (Medina et al. 2015).

20.2.4.5  Far South Zone

Only two studies have been carried out in this geographical area. The first of these 
focuses on the function of AMs in natural ecosystems, specifically the factors that 
facilitate the rapid ecological successions of Nothofagus forests in the vicinity of the 
Pia Glacier, Tierra del Fuego. The results suggest that the symbiosis of Gunnera 
magellanica (“nalca”) with cyanobacteria and of trees and shrubs with AMF is the 
key process that allows plant succession, with AMF having a small incidence in the 
uptake of N by the nalca (Benavent-González et  al. 2019). Another study high-
lighted the presence of AMF in the soils of King George Island in the south Shetland 
Islands, Antarctica, identifying three new species of AMF belonging to the genus 
Glomus and the species Acaulospora mellea, being the first time that the latter is 
identified colonizing plants in the soils of Antarctica (Barbosa et al. 2017).

20.3  Information Gaps Regarding Arbuscular Mycorrhizal 
Symbiosis in Chile

It is evident the concentration of studies in the central and south zones, predominat-
ing subjects such as plant growth and nutrition, Al phytotoxicity, diverse factors that 
affect the AMF in agroecosystems, phytoremediation of Cu-contaminated soils, and 
AM functioning in natural ecosystems, where the predominance of studies with 
agronomic approach or remediation of anthropic alterations is also evident, over the 
knowledge of the presence, functionality, and environmental factors involved in the 
MA symbiosis in natural ecosystems.

20.3.1  Far North Zone

As is evident from the systematization, in the far north zone, studies with an agri-
cultural approach are predominant, where have been studied melon and lettuce spe-
cies, with three studies in each case. On the other hand, a study has recently been 
published that describes the presence of AMF in plant species from the hyperarid 
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desert (Pampa del Tamarugal), the Prepuna and the Puna in the Tarapacá Region 
(Santander et al. 2021b), an important advance that allows to know the AM status of 
the species inhabiting those extreme environments. Reinforcing, this area is the dri-
est temperate desert in the world, with very old soils, unique in its kind and well 
developed, with horizons rich in nitrates and other soluble salts such as halite and 
iodine salts, characteristic of the intermediate depression of the Atacama Desert 
(Ericksen 1983). As altitude increases and to the east, there are some sectors of 
depression covered by evaporative accumulations of salts, salt flats, and wetlands, 
with soils rich in organic matter, which are essential for unique and fragile wetland 
ecosystems (Norambuena et al. 2011). In this scenario, it is essential to generate 
cadastres of AMF communities that could be facilitating the establishment of plant 
covers under conditions of high salinity and scarce water availability, serving as a 
guide to restore ecosystems that are affected by such limitations or favor the incipi-
ent agricultural activity.

On the other hand, agriculture in this area is developed mainly in valleys that 
cross the Atacama Desert, such as the valleys of Lluta, Azapa, Camarones, Camiña, 
and Huatacondo (Fig. 20.6), characterized by poorly developed soils (Norambuena 
et al. 2011), so the beneficial effect of the introduction of inoculants based on AMF 
in the crops that are located there to enhance the evolutionary development of the 
soils must be evaluated, as well as plant nutrition and growth.

Fig. 20.6 Agroecosystems from the far north. (a) Agricultural production in the Camarones 
Valley, Arica y Parinacota Region. (b) Agriculture in the Camiña Valley, Tarapacá Region. (c) 
Sampling rhizosphere soil in endemic cacti from the Huatacondo Valley, Tarapacá Region. (d) 
Profuse AM root colonization in local ecotype of onion produced in Camiña valley. Photo credit: 
Pablo Cornejo
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Fig. 20.7 Relict forest from Fray Jorge National Park, Coquimbo Region. (a) “Selva Valdiviana” 
from Fray Jorge Forest National Park. (b) Hydric support based in the “camanchaca” originated in 
the Pacific Ocean. (c) Transition from “Selva Valdiviana” to xerophytic ecosystem representative 
from the near north. Photo’s credit: P. Cornejo

20.3.2  Near North Zone

The studies that have been carried out in the near north correspond mainly to eco-
systemic interest, when studying the relationship of AMF with native plant species. 
Two of the four studies presented findings on AMF present in the Fray Jorge 
Forest National Park (Aguilera 2004; Aguilera et al. 2016), which provided a clear 
example of the importance for conserving relict ecosystems to conserve resources 
and disseminate scientific knowledge that allows understanding the interrelation-
ships that are generated in these ecosystems. This is especially important consider-
ing the macro-climatic context of the camanchaca, which ultimately results in an 
extremely particular ecological exception as the Valdivian forest (Fig.  20.7). 
Likewise, it is noticeable that the other studies have focused on recognizing the AM 
status of several native species such as the romerillo (Menares et al. 2017), the oliv-
illo (Aguilera 2004), and Atriplex sp. (Aguilera et al. 1998), among others, so con-
tinuing to deepen the ecosystem role of AMF, which can be of great importance to 
promote ecosystem restoration in the area. On the other hand, it is important to note 
that this area is dominated by transverse valleys, the Cordillera de la Costa and the 
Cordillera de los Andes, so the intermediate depression is not markedly present 
(Pfeiffer et al. 2019). In addition, it presents young soils of little development in the 
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lower areas, while in the highest fluvial and marine terraces, there may be well- 
developed soils, existing even areas with relict ecosystems of paleoclimates, as they 
present wetter climates (Pfeiffer et al. 2019).

20.3.3  Central Chile

In the central zone, there are highly fertile soils, so agricultural activity predomi-
nates, which affects a greater pressure on this resource, leading to the development 
of a high-intensity irrigated agriculture (Armesto et al. 2007). Likewise, in the cen-
tral zone, there are studies of AMF in several species of agronomic interest, such as 
onions, vines, wheat, and corn, although there is also a history of the use of AMF in 
tree species, such as avocado and orange, especially referring to the use of commer-
cial inocula to enhance their production, so it may be interesting to study the poten-
tial of using AMF both in other tree species as well as in herbs of agronomic interest, 
especially if the use of native AMF in the area is considered. On the other hand, it 
has been documented that most of the native and endemic tree species of the central 
zone establish the AM symbiosis, whose use given the high pressure of urban expan-
sion and the agronomic use of soils can enhance reforestation and restoration plans 
for the fragments of native forest and the Chilean matorral. Likewise, the study by 
Casanova-Katny et al. (2011) on the abundance of AMF in rhizosphere soil of the 
yareta, on which many more herbaceous species inhabit, highlighted the importance 
of AMF to maintain ecosystems with high plant diversity and even the networks that 
can contribute to the formation of plant communities in which energy cooperativism 
allows the establishment of a large number of species, through the transfer of C 
between individuals even of different species (Simard and Durall 2004). This is 
especially relevant in Mediterranean ecosystems because they are recognized as 
biodiversity hotspots. Likewise, the high colonization of the roots of the yareta, 
despite growing only a few millimeters per year, could imply that mycorrhizal rein-
forcement is even a requirement for the establishment of this plant under conditions 
of extreme altitude (Casanova-Katny et al. 2011).

20.3.4  South Zone

In this area there is the largest amount of information regarding the AM symbiosis in 
Chile, representing more than half of all the available bibliography. In this zone, stud-
ies carried out on wheat and other cereal species, such as barley and oats, as well as 
tomato, blueberry, goat pepper, and lupine, predominate strongly. Regarding lupine, 
despite its inability to generate the AM symbiosis, it is interesting to study it as part of 
the annual rotations in the area, demonstrating that its use can be compatible with 
agricultural crops of AM hosts plant species, thus constituting more diverse ecosys-
tems that contribute to maintain the soil biodiversity. In this way, it is possible to 
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promote the sustainability of ecosystems by decreasing erosion rates as a result of 
intensive agronomic use. Likewise, there are studies that detail the detrimental nature 
of some traditional agricultural practices, especially in the biotic communities of the 
soil, such as tillage which in turn affects the retention capacity of C (Seguel et al. 
2008). This is especially relevant in the context of the current climate emergency, in 
which it is essential to promote, through appropriate management practices, the diver-
sity and functionality of populations of native AMF (Borie et al. 2010).

The peculiar properties of the volcanic soils from southern Chile determine that 
native AMF populations play a key role in the sustainability and productivity of the 
plant ecosystems located there, both agronomic and natural. The strong agricultural 
and forestry production in this area determines the need to redirect current manage-
ments toward more sustainable systems, which are supported by the development of 
biotechnological tools, among which the selection of efficient native AMF and their 
incorporation as biofertilizers emerges as a highly favorable alternative (Borie et al. 
2010). For natural ecosystems, as well as for agricultural studies, it should be noted 
that the largest number of studies correspond to the La Araucanía Region, so 
expanding the existing information in other regions of the south zone will allow a 
better understanding of the ecosystem dynamics that imply the AM symbiosis, con-
tributing to the formation of databases that allow sustaining reforestation and eco-
system restoration plans, among others. Additionally, in this area, as well as in the 
central zone, there is a great substitution of natural ecosystems by forest monocul-
tures and also by grassland ecosystems, so it is essential to integrate the different 
uses at landscape level, taking into account that the establishment of native species 
can be compatible with other uses.

20.3.5  Far South Zone

This area is evidently understudied in terms of the AM symbiosis, as well as being 
one of the most unknown in terms of the soils there present, which product of a 
complete covering by ice fields during the last glaciation (22 thousand years ago) 
has generated very young soils (Pfeiffer et al. 2010). In this area there is a continu-
ous mantle of peatlands of varying thickness in the fjords, which constitute the larg-
est reserve of organic C in the country (Loisel and Yu 2013), so it is essential to 
investigate the role of AMF in such ecosystems, which currently suffer great 
anthropic threats due to the absence of legal regulations on the extraction of moss 
(León et al. 2012). Likewise, although the ecosystems found in this area are mainly 
ectomycorrhizal, it would be important to evaluate the degree of functionality of the 
AM symbiosis in herbaceous or shrub species, to contribute to understanding its 
ecosystem complexity.
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20.4  Projections and Study Needs Regarding 
to the AM Symbioses at the National Level

International studies detailed the advantages of using AMF in species such as bean 
(Phaseolus vulgaris) or rice (Oryza sativa), although also indicate the ability of 
AMF to acquire nutrients from the soil can be inhibited at low temperatures (Acuña 
et al. 2020), which is important to address since there are no studies in Chile focused 
on plant production under low temperatures. The above is crucial, because among 
factors that are essential to consider, temperature, seasonality, soil fertility, and the 
C/N ratio can explain about 50% of the variation in the intensity of AM colonization 
(Soudzilovskaia et al. 2017). Another topic that needs to be deepened is the benefi-
cial use of AMF in conditions of osmotic stress, either due to environmental condi-
tions of drought or salinity, where both agricultural production and the stability of 
natural ecosystems can be affected (Santander et  al. 2017), which is a threat of 
increasing magnitude in Chile. At present, the beneficial effects of the use of AMF 
in species of agronomic interest, such as corn, strawberry, clover, and lettuce, among 
others, have been studied, recommending the use of AMF inocula adapted to 
osmotic stress (Santander et al. 2017). Given the above, it is evident that the poten-
tial of the AM symbiosis in agricultural applications and natural ecosystems in 
Chile is still incipient. This may be due mainly to the fact that the first studies 
emerged relatively recently in the early 1990s, with research mainly focused in 
some specific situations, such as phytostabilization in Cu tailings or the installation 
of agricultural systems in acidic soils. These topics have the largest number of stud-
ies by topic, probably because they imply a great environmental urgency for bio-
technological applications. Likewise, in terms of agricultural production systems, 
studies predominate in cereals, mainly wheat and barley, generating guides that 
systematize the knowledge already collected around these species, which could 
serve to disseminate the application of AMF inocula according to each environmen-
tal situation or plant material.

There are very few species of agricultural interest in which studies have been 
carried out apart from the aforementioned cereals, knowing the compatibility of 
AMF only in some geographical and environmental conditions, and even with few 
species of AMF, which makes it difficult to extrapolate the results to other condi-
tions as a result of the uncertainty and economic risk they represent. On the other 
hand, it is complex to carry out experimental analysis of compatibility between 
AMF and plant species, since the possibilities of symbioses are multiple and the 
effects on plants may vary depending on the species or variety in question (Aguilar 
and Becerra 2017). For this, an appropriate alternative would be to focus on the 
use of molecular tools in future studies, to evaluate the compatibility of each AMF 
with the plant species of interest, through omics analysis, such as genomics 
(Redecker 2020), transcriptomics (Venice et al. 2020), or metabolomics. Similarly, 
it is important to consider that the use of exotic inocula can cause invasions or 
co-invasions by plants and fungi, in addition to generating competitive relation-
ships with native resources, so the use of local inocula should be prioritized (Hart 
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et  al. 2017). On the other hand, a combination of different AMF species will 
potentially be more effective than a monospecific inoculum (Gogoi and Singh 
2011), as long as these interactions are in turn compatible. Likewise, the benefi-
cial effects on plant nutrition will depend on fungal diversity and soil conditions 
(Avio et al. 2006), depending on the agricultural system used and the plant species 
cultivated.

In natural ecosystems, efforts should continue to identify indigenous AMF spe-
cies associated with native or endemic plant species, as it is important to build a 
database that contributes to management plans to strengthen ecosystem resilience in 
case of disturbed ecosystems or for ecological restoration programs in case of 
degraded ecosystems (Rivas et al. 2016). Likewise, it is difficult to generalize a pat-
tern of action, since each particular situation must be evaluated, being important to 
understand the specific plant-AMF interactions and ecosystem modifications in 
response to climate change (Smith and Read 2008). This may be relevant for pres-
ervation purposes, particularly of vulnerable or threatened species, which may serve 
to know the influence of AM symbiosis on the structure and stability of forest com-
munities (Godoy et al. 1994). Therefore, knowing the mycotrophic status of native 
plant species can allow to promote optimal conditions of soil microbial communi-
ties to enhance the establishment of seedlings (Godoy et al. 1994), support their 
growth, development (Medina et al. 2015), and nutrition, promote ecological suc-
cessions (Benavent-González et al. 2019) and preservation and conservation of eco-
systems or endangered species, or even influence the development of agroforestry 
ecosystems that harmoniously combine the different ecosystem services that can be 
obtained from them.

Also, it should be noted that the greater diversity of types of mycorrhizal associa-
tions and the higher rates of diversity in plant families in the plant cover suggest that 
different types of mycorrhizae in an ecosystem have a significant evolutionary effect 
on plant diversity (Mujica et al. 2019). Likewise, deepening on the study of each 
ecosystem, it will be important to identify associations between different AMF taxa 
(Torres-Mellado et  al. 2012) to preserve forest ecosystems and maintain their 
mycorrhizal potential (Seguel et al. 2008). Likewise, in both agroecosystems and 
natural ecosystems, it is important to develop intensive studies of different soil sam-
ples, paying attention both to fungal structures adjacent to the rhizosphere, as well 
as to the extraradical structures located beyond the limits of the rhizosphere, which 
play a key role in physiological, biochemical, and molecular aspects that determine 
plant growth (Cornejo and Aponte 2020). In this sense, it is essential to study the 
density of the AMF structures (hyphae and spores) in the mycorrhizosphere, as well 
as their vitality, activity, and functionality (Cornejo and Aponte 2020), aspects prac-
tically uncovered in studies regarding AMF.

Finally, it should be noted that currently in Chile there is not a solid legal body 
that protects the soil resource, being essential to move toward a framework soil law, 
which updates all existing legislation on the matter, taking care that the use of this 
resource is done in a rational way with the aim of preventing its loss and degradation 
(Pfeiffer et al. 2019). Thus, along with this, it must be understood that the soil is a 
system that houses life, which is crucial for the maintenance of an adequate 
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ecosystem functionality and of the ecosystem services they provide, in which the 
MA symbiosis plays a central role.

20.5  Conclusion

Arbuscular mycorrhizal fungi (AMF) play a key ecological role in the establishment 
and development of various plant species, by facilitating the plant’s acquisition of 
nutrients and water from the soil. In addition, they allow the reduction of biotic and 
abiotic stresses such as drought, salinity, and high levels of heavy metals, improving 
the structure of soil aggregates. This shows that AMF can improve the conditions of 
a soil system, which is largely favorable given the current climate emergency con-
text largely caused by anthropic alteration of terrestrial ecosystems.

Based on the systematization of the information collected, the predominance of 
studies with an agricultural focus on monoculture systems in Chile is evident, which 
indicates the great importance that AMF have for the improvement of plant produc-
tivity. Moreover, based on the international literature that indicates that both plant 
diversity and ecosystem benefits are close related with the presence of AMF, it is 
important to expand the studies of the AM symbiosis in Chile in unconventional 
agricultural production systems such as syntropic agriculture, edible forests, and 
organic agriculture, among others. This is extremely urgent to implement at national 
level food production systems that adapt harmoniously to the new environmental 
conditions, in special in a scenario of climate change.

In natural ecosystems, there are still many gaps in information; Therefore, to col-
lect antecedents regarding the AM status of native and endemic plant species will 
allow in the present and future the elaboration of management, conservation, or 
restoration plans of intervened or degraded ecosystems, based on a healthy soil, 
which is the main support on which plant and animal life is located, thus favoring 
ecosystem resilience. Likewise, focusing on research efforts with the support of 
molecular tools will increase knowledge regarding the compatibility between AMF 
species and different plant species, which is essential to reduce experimentation 
efforts.
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21.1  Introduction

Restoration ecology is a discipline that aims to return a degraded ecosystem to an 
historical trajectory, in order to sustainably persist for a long term, by using the 
natural history knowledge of a particular ecosystem as well as the ecological theory 
(Huxel and Hastings 1999; Hobbs and Harris 2001; Van Andel et al. 2012). Currently, 
internationally exists a growing development of this area of knowledge, with the 
existence of journals such as Restoration Ecology, which publish several investiga-
tions about ecological restoration, from different regions of the world with the sup-
port of the Society for Ecological Restoration (SER; www.ser.org).

The concern of restoration ecology is highly ambitious, since it requires previous 
ecological knowledge and the participation of different disciplines such as ecology, 
botany, zoology, mycology, and edaphology, among many others, and to have a 
reference ecosystem, which is the one with the characteristics that are expected to 
reach after the restoration actions. However, the ecosystem dynamic is probabilis-
tic; hence, it can develop many different trajectories. Many of them can occur at the 
same time in different parts of the spatial dimension since the landscape can have 
environmental heterogeneity. Based on this, it can be acknowledged that usually it 
is not appropriate to perform only one restoration plan. Therefore, a restoration plan 
should have several sub-plans that consider the heterogeneity of the reference 
ecosystem.

There are two types of ecological restoration strategies: (a) passive restoration, 
which is the action that implies preventing, controlling, or modifying the degrada-
tion factors of a certain ecosystem, such as tree felling, hunting, wildfires, and live-
stock, among others, in order to allow the recovery of biodiversity and ecological 
functioning through natural succession (Becerra et al. 2018); and (b) active restora-
tion, which are the actions performed when a component of the ecosystem or an 
ecological process cannot be recovered, those actions might be, for example, habitat 
management, sowing of propagules, trees, shrubs or herbs, planting, watering, 
fertilization, using artificial shadow, among others (Becerra et al. 2018). Which type 
of restoration is used depends on the site conditions, and any restoration plan should 

P. Aguilera 
Departamento de Ciencias Agropecuarias y Acuicolas, Facultad de Recursos Naturales, 
Universidad Católica de Temuco, Temuco, Chile 

C. Marín 
Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad 
SantoTomás, Valdivia, Chile 

R. Godoy 
Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile 

M. Duarte 
Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad Austral de Chile, 
Campus Isla Teja, Valdivia, Chile 

R. Santelices 
Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del 
Maule, Talca, Chile

P. Silva-Flores et al.

http://www.ser.org/


433

evaluate, a priori, the type of restoration needed, as well as where and when the 
restoration should be performed, following what is known about the focal ecosystem.

In the recent years, new conceptual elements and theoretical frameworks have 
led to generating restoration proposals by using natural resources from the same site 
that will be restored. In this context, nature-based solutions (NbS) arise, improving 
restoration effectiveness and generating several contributions of nature to people, 
through the recovery and maintenance of ecosystems. Those benefits can reduce the 
negative socioeconomic and environmental impacts of the different change precur-
sors of ecosystems. Given that any strategy or sustainable action that aims to be 
effective and scaled to a social level should incorporate the sociocultural context of 
the communities (Bartels et  al. 2013), the effectiveness of the NbS significantly 
increases when a co-production of a NbS approach is followed, in where the com-
munities knowledge and experiences are enriched with the science-technical knowl-
edge (Lavorel et al. 2020).

21.2  Ecological Restoration and Mycorrhiza: 
A General View

Mycorrhizal associations have benefits for both partners that establish the symbio-
sis, since the mycobiont helps the plant with the uptake of nutrients and water from 
the soil and receives carbohydrates in return (Smith and Read 2008). Also, the 
mycorrhizal symbiosis allows the plant to tolerate biotic and abiotic stresses, such 
as drought and pathogens (Delavaux et al. 2017). These functions escalate to popu-
lation, community, and ecosystem levels, since these enhance plant recruitment, 
increase plant diversity and ecosystem productivity, and drive carbon and nutrient 
cycling (van der Heijden et al. 2015). It is also a matter of high importance to con-
sider mycorrhizal symbioses in the context of climate change and its mitigation. 
Plants with mycorrhizal associations are responsible for significantly higher carbon 
sequestration compared to non-mycorrhizal plants (Soudzilovskaia et  al. 2019). 
Therefore, since ecological restoration is one of the main mitigation solutions for 
climate change, through the logic of increasing carbon sequestration (Bastin et al. 
2019), mycorrhizal symbiosis consideration will support and upgrade the above-
mentioned solution (Soudzilovskaia et  al. 2019). In consequence, several studies 
around the world have considered the use of mycorrhizal fungi to improve the out-
comes of ecological restoration.

A relatively recent global meta-analysis found that when mycorrhizal symbiosis 
is considered and applied in restoration contexts, plant biomass increases, with the 
greatest effects observed in N-fixing woody plants, C4 grasses, and plants growing 
at low soil availability of P, and that the increment of biomass also increases in the 
first 3  years after inoculation (Neuenkamp et  al. 2019). Species richness of the 
restored communities is also higher when mycorrhizas are used and the restored 
communities being much more similar to the reference ecosystem in the same con-
texts (Neuenkamp et al. 2019).
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Fig. 21.1 (a) Proportion of field experiments by country in contexts of ecological restoration. (b) 
Proportion of nursery experiments by country with an interest in ecological restoration. (c) 
Proportion of descriptive studies by country searching for mycorrhizal behavior in contexts of 
ecosystem recovery

21.3  Ecological Restoration and Mycorrhizas: State 
of the Art in South America

In the valuable work of Neuenkamp et  al. (2019), as usually occurs with meta- 
analyses, they do not consider all the available information, mainly due to fit selec-
tion criteria for the particular questions of the study. In fact, in the general patterns 
found by Neuenkamp et  al. (2019), only two studies from South America were 
considered. It is acknowledged that South America can show different ecological 
patterns compared to those found in the northern hemisphere, especially in terms of 
mycorrhizal symbioses (Bueno et al. 2017). Thus, searching deeper for other studies 
conducted in South America might show some deviation of this region from the 
general patterns already found. This can have important consequences when an eco-
logical restoration experiment within the South American region might be devel-
oped. Consequently, for the present chapter, data search was performed in the Web 
of Science (WoS), using the keyword string mycorrhiza* AND (restoration or rec-
lamation or rehabilitation) and between the years 1980 and 2022. This search identi-
fied 1509 studies. Then, within the results of the first search, a filter by South 
American countries was applied, one by one: Chile, Bolivia, Peru, Ecuador, 
Colombia, Venezuela, Guyana, Suriname, French Guiana, Brazil, Paraguay, 
Uruguay, and Argentina. Among them, only seven published studies involved the 
use of arbuscular mycorrhizal (AM) symbiosis in field experiments in contexts of 
ecological restoration were found from Venezuela, Brazil, and Argentina, 
(Fig. 21.1a). In the same search, other studies indirectly related to ecological resto-
ration were found, such as 11 studies in nursery conditions focused to apply the 
obtained results in field ecological restoration contexts that were also found for 
South American countries (Fig. 21.1b). Finally, 14 studies explored what occurred 
with mycorrhizal symbiosis either in space, time, or both after some years of resto-
ration in perturbed sites (Fig. 21.1c).
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It is worth highlighting the pioneer studies in the topic of ecological restoration 
in South America. Those come from Venezuela and as such, they will be further 
mentioned in the next section. Then a new study from Chile will be presented, and 
even though is a nursery experiment, the same experiment was replicated in the 
field, and data are currently under analysis to be further published as the first case 
of a field experiment of ecological restoration by using arbuscular mycorrhizal 
fungi (AMF) in Chile.

21.4  Study Cases for South America

21.4.1  Role of Arbuscular Mycorrhiza in the Ecological 
Restoration of Venezuelan Degraded Ecosystems

Five years after the restoration of a small area (0.16 ha) of a tropical dry forest at 
Península de Macanao (Venezuela) (Fajardo et al. 2013), Fajardo et al. (2015) com-
pared the AMF communities present in restored plots with those found in plots with 
5 years under natural regeneration. The results showed that restoration may have 
promoted a greater richness and diversity of AMF, in particular, in those plots where 
a hydrogel was applied (the more effective treatment), although the differences 
between restored and no restored plots were not significant. It is possible that 5 years 
after restoration were not enough to define these trends. However, the species com-
position of AMF between restored and no restored plots was different with the pres-
ence of species belonging to the Gigasporaceae in the restored plots, which is a 
family usually found in undisturbed habitats.

It has been widely reported that the successional rate of degraded ecosystems 
could be faster through inoculation of plants with AMF of interest or management 
of their populations (Janos 1980; Allen 1991). In this regard, the use of AMF as a 
bioinput to propagate tree species to recover disturbed areas is a practice that, in 
Venezuela, has been increasingly implemented in recent years.

Early works using this important biological interaction for the restoration and 
rehabilitation were carried out in the oligotrophic savannas of southern Venezuela 
(Cuenca et al. 2002, 2003). More recently, Cáceres et al. (2014) evaluated the effect 
of inoculation with AMF from different successional localities and a xeric scrub 
(reference ecosystem) on the growth and survival of two legumes species with 
potential to be used in the restoration. For Piscidia carthagenensis, the experiment 
consisted of the application of four treatments that combined three soil types and 
four inoculation conditions. At the greenhouse, inoculum from two successional 
sites (2 and 20 years old of abandonment) produced the greatest effects on height, 
total biomass, and leaf area when plants were grown in the successional soil, but not 
when grown in the scrub soil (Kalinhoff 2012). In the field conditions and after a 
drought season, it was found that P. carthagenensis plants grown in successional 
soil inoculated with native AMF showed a survival rate higher than 80% compared 
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to non-inoculated plants (Cáceres et al. 2014). For Coulteria mollis, two soil types 
and three inoculation conditions were combined. The growth response (height and 
total biomass) of inoculated plants that were grown in the scrub soil was signifi-
cantly higher than those grown in the successional soil regardless of the inoculation 
received (Cáceres et al. 2014). It is possible that functional compatibility between 
different arrays of fungi and plants associated, in turn, with the AMF diversity of 
each inoculum used, explains the differential responses observed between both tree 
species (Cáceres et al. 2014). These authors concluded that the production and use 
of native inoculum of AMF is a favorable strategy for assisted restoration.

Continuing with the activities of recovery of dry forest areas destroyed by sand 
mining, in 2014, it was decided to incorporate AMF as an additional treatment to 
improve the propagation of several tree species and leave, as a fixed treatment, the 
application of hydrogel for its proven effectiveness (Fajardo et al. 2013). To do this, 
it was selected two distinct areas for planting. One of them consisted of an area 
under natural regeneration (SA) that began once sand extraction ceased, and the 
other one was an area where sand mining had finished recently, and hence it was an 
area with practically bare soil (DA). Regarding plant species, it was selected four 
native tree species: Prosopis flexuosa, Parkinsonia praecox, Coulteria mollis, and 
Bulnesia arborea. In the nursery, 75 pre-germinated seeds, of each species, were 
sown in two soil types– one of them collected from the degraded area (DA) and the 
other from the successional one (SA)–and subjected to 3 inoculation treatments, 
non-inoculated control (C), inoculation with a mix of AMF from the degraded area 
(DI), and inoculation with a mix of AMF from a no disturbed area (NI), 25 seeds for 
each treatment. The mycorrhizal inoculum had been produced 4  months earlier. 
After 6 months of growth in the nursery, a total of 432 individuals were planted in 9 
plots established both in DA and SA.  The height and survival of all individuals 
planted were recorded three times a year.

In general, in the DA, 50% of all plants that were inoculated with DI had sur-
vived, while 45% of all no inoculated plants remained alive. Only 39.7% of all 
plants inoculated with NI survived. Regarding plant species, P. praecox had the 
higher number of live individuals in all treatments, especially when it was inocu-
lated with the NI. Meanwhile, B. arborea had the highest mortality. P. flexuosa and 
C. mollis had an intermediate survival percentage, highlighting the fact that P. flex-
uosa might not need to be inoculated judging by the results. In the SA, total survival 
was below 10% at the end of the evaluated period, and the majority of live individu-
als were inoculated with NI. Again, P. praecox was the plant species with the high-
est percentage of survival, especially when it was inoculated with NI.

With respect to growth, which could only be determined in the DA, both P. flex-
uosa and C. mollis showed the highest height values in the control treatment, while 
P. praecox grew slightly more when it was inoculated with NI, though the differ-
ences with the other treatments were not significant. In summary, neither P. flexuosa 
nor C. mollis would not be necessary to inoculate them, while it would be recom-
mended to do so for P. praecox.

Planting mycorrhizal trees or shrubs in degraded areas is a strategy that favors 
the creation of the so-called fertility island. These plants (also considered as nurse 
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plants), besides contributing to recovering the natural inoculum of soil lost during 
degradation processes, which will favor the incorporation of other mycorrhiza- 
dependent plant species, would also act as elements generating wind turbulence 
around the individual that would produce an increase of the propagule recruitment 
both from other plant species and AMF (Cuenca 2015). This would contribute to 
reactivate and accelerate the natural regeneration (succession) that could otherwise 
be extremely slow, which could lead to further degradation of the site.

21.4.2  Effects of Individual and Consortia of Arbuscular 
Mycorrhizal Fungal Species in the Quality Index 
of the Endangered Conifer from Chile 
(Araucaria araucana)

In the coastal Nahuelbuta mountain range (37° 40’S to 37° 50’S) in south-central 
Chile, the temperate forests of the conifer Araucaria araucana are classified as 
endangered (MMA 2020) as a result of the expansion of the agricultural frontier and 
an increase in the frequency and intensity of forest fires, product of climate change 
(Garreaud et al. 2020). This makes it necessary to generate nursery seedling produc-
tion tools, to strengthen future ecological restoration plans. In this context, it has 
been suggested that the underground microbiological and plants’ metabolic pro-
cesses (and their effects in the overall ecosystem functioning) would be more 
adapted to in-site and local conditions in a scenario of ecological restoration using 
microbial inoculum (Godoy and Marín 2019). Plants and their rhizosphere, includ-
ing their AM fungal symbionts, constitute a close spatial-temporal connection with 
ecosystem age, reflecting the state of ecological succession on a large scale. Previous 
research has also shown that in such restoration programs, applying consortia of 
AMF works better regarding plant growth and survival than applying single species 
inoculum (Aguilera et al. 2017; Godoy and Marín 2019).

In order to test such predictions, an experiment to assess the effects of single and 
mixed-species commercial AM fungal consortia, as well as native AM fungal con-
sortia in the quality index of A. araucana seedlings, was performed in Nahuelbuta 
National Park, south-central Chile. For this, A. araucana seeds were collected from 
the same park (and stored at 4 °C) to maintain the genetic variability of the species 
and not alter the ecosystem processes of the rhizosphere in the experiment 
(Fernández et  al. 2020). Prior to germination, seeds were disinfected with 1% 
NaOCl for 1 min and rinsed twice with distilled water before sowing. Germinated 
seeds were arranged in 2 L plastic pots with composted bark substrate. In addition 
of a control (C) treatment without inoculum, three treatments with 1 g of inoculum 
material per seedling (which contained approximately 900 AMF spores) were estab-
lished: T1, single AMF species (Claroideoglomus claroideum) from a commercial 
inoculum; T2, four AMF species (Acaulospora laevis, Scutellospora calospora, 
Clariodeoglomus etunicatum, and Rhizoglomus intraradices) from a commercial 
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Fig. 21.2 Average values and standard deviations for Dickson’s plant quality index (a), and 
robustness index (b) for Araucaria araucana seedlings (n = 25) in treatments with different mycor-
rhizal inoculations (T1, singular commercial AMF species; T2, four commercial AMF species; T3, 
native soil containing 17 AMF species) and control (C). Different letters above the mean value 
indicate statistically significant differences (p < 0.05), according to the Games-Howell test

inoculum; and T3, corresponded to native soil containing 17 AMF species (Becerra 
2019). A total of 100 seedlings were evaluated (25 per treatment). After 11 months 
of the bioassay under controlled conditions in the nursery, the evaluation was car-
ried out by harvesting the seedlings for each treatment and the control, to calculate 
the Dickson quality index and the robustness index (Rueda Sánchez et al. 2018).

The Dickson quality index was significantly higher in T3 (0.54) than in the other 
treatments (0.30–0.34), which did not differ among them (Fig. 21.2a). In contrast, 
the robustness index was significantly higher in T2 (3.63), followed by T3 (3.38) 
and T1 (3.31), and the control (3.04) was significantly lower than the rest (Fig. 21.2b). 
There is scarce research in the use of the rhizosphere and native symbionts (and 
their interactions with plants), as restoration tools for native Chilean flora (Godoy 
et al. 1995; Godoy and Marín 2019; van Galen et al. 2021). A study by Godoy et al. 
(1993) using the AMF species Rhizoglomus intraradices as inoculum for four native 
conifer species under greenhouse conditions (20 weeks) shows that all morphomet-
ric variables analyzed had higher values than the non-inoculated control, indicating 
compatibility and efficiency of the mycorrhizal inoculation. In this experiment, it is 
shown that consortia of AM fungal species lead to better results as compared to 
single-species inoculum and the control. But the evaluation of the inoculation 
effects depends on the metric used; as here, different indexes were higher under dif-
ferent treatments. Native AMF species inoculum increased the overall plant quality, 
while AMF commercial consortia increased their robustness, probably indicating 
differential roles and/or functional redundancy of the particular AMF species 
involved. Future forest ecological restoration plans in altered ecosystems should 
include the use of native mycorrhizal inoculates, to increase plant adaptation and 
survival, ultimately and hopefully recovering tree populations. In this sense, cur-
rently, a field experiment with the same setting is being analyzed.
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21.5  Ectomycorrhizas and Ecological Restoration 
with a Focus in the Neotropical Region

Currently, at a regional scale, it was possible to find one short-term study, and out-
side the WoS search previously mentioned, on the use of ectomycorrhizas (ECMs) 
in a field experiment in contexts of ecological restoration, with positive effects on 
plant quality index when ectomycorrhizas are used to inoculate plants (Godoy and 
Marín 2019). At a global scale, few restoration studies include soil microbiota, and 
research that explores the landscape does not look so much different. Effects of 
ECMs in plant success are rare, especially in the neotropical region. Research about 
restoration has grown in the last decades, but studies usually explore ecological 
theories that consider only plants. Considering other organisms will allow a better 
understanding of the plant communities and avoid unsuccessful restoration. How 
communities assemble, both naturally and artificially (via restoration), has received 
worthy attention (Belyea and Lancaster 2012; Temperton and Hobbes 2004), but 
only a few studies have evaluated belowground patterns and the role of soil micro-
biota (e.g., mycorrhizal fungi) in the restored communities (Sun et  al. 2017). 
Belowground interactions may play an important role in restoration projects, espe-
cially in ecosystems that deal with environmental challenges such as high irradi-
ance, salinity, nutrient-poor soils, or contaminated soils (Barcelos et al. 2012).

Inoculation of arbuscular mycorrhiza (AM) has been used as a biological tool for 
plant establishment and development in agriculture (Solaiman and Mickan 2014) 
and in restoration (de Moura et al. 2022) practices. However, little is known about 
the role of ECMs and whether they can facilitate restoration in the same way AMF 
does. The studies on tropical ECMs are fairly recent (Corrales et al. 2018; Vanegas- 
León et al. 2019), and the role of ECMs in the neotropical region is not very well 
known. The use of ECMs in the restoration of native forests in the neotropical region 
deserves more attention.

Ectomycorrhizas are considered pioneer associations during the colonization of 
plant communities (Lindig-Cisneros et al. 2019). Introduced native seedlings (via 
restoration) may not succeed if the native microbial communities are not introduced 
as well, especially those associated with initial colonization. Restoration studies 
often involve controlling invasive species (Weidlich et al. 2020), which may depend 
on more (Moyano et al. 2020) or less (Vogelsang and Bever 2009) on mutualistic 
species. Very little is known about the consequences of having exotic soil microbi-
ota in areas where exotic plants have been removed. Since plants actively alter the 
soil microbiome to their benefit in a species-specific way (Huang et  al. 2019), 
aboveground biological invasions also impact the underground. Specifically, for 
ECMs, interactions between native plants and exotic fungi do not necessarily cease 
after the removal of exotic plant species (Lofgren et al. 2018), and this fact adds an 
unknown competition problem between native and introduced fungi.

In the neotropical region, there are records of ectomycorrhizal fungi (Singer 
et al. 1983; Sulzbacher 2013; Roy et al. 2016) even though not much is known about 
their function in forests. It is safe to say that ECMs provide ecosystem services, act 
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in processes that help to recover native environments, and, therefore, promote resto-
ration (Ortega et al. 2004). It is assumed this must be the case for forests in the 
neotropical region as well. Specific ectomycorrhizal fungi enhance the survival 
rates and early growth performance of several plant species (Carey 2016). 
Inoculation of nurse seedling species with appropriate fungal partners is one of the 
most efficient environmental approaches, especially in disturbed ecosystems. The 
presence of endemic symbionts in an ecosystem is an indicator of a well-diversified 
community (Mueller and Halling 1995) either above- or belowground. 
Ectomycorrhiza formation could be one of the reasons species become established 
and survive in harsh environments. The benefits of these interactions may go beyond 
single individuals. It is believed that nurse plants facilitate other plant species to 
become established by (1) improving microclimatic conditions on-site, (2) chang-
ing the soil microbiota to favor other ECM-forming plants, or (3) acting as a hub 
tree, directly transferring resources through ectomycorrhizal connections. Ongoing 
research in southern Brazil is studying if part of these complex interactions can be 
attributed to ECMs (Weidlich et al. 2020).

It is, therefore, essential to know more about the diversity and ecophysiology of 
ECMs in tropical regions and find out which are the ECM hosts and how frequently 
these associations occur. Also, it is necessary to investigate how the neotropical 
ECM function and what are the benefits to the partners. This is challenging because 
it forces us to look outside the box, searching for undescribed patterns. A better 
understanding of ECMs in the neotropical and tropical regions will allow us to infer 
how it can be included in restoration projects in the same way arbuscular mycor-
rhizae have been used.

21.6  Conclusion

The experiments from South America are scarce and come from Venezuela, Brazil, 
Argentina, and Chile most of them showing positive effects in plants as well. The 
scarce evidence from South America comes mainly from arbuscular mycorrhizal 
symbiosis, with one exception for ectomycorrhizal symbiosis. Also, it was not pos-
sible to find evidence of the role of orchid and ericoid symbioses in experiments 
from South America. More field experiments are needed in countries such as Perú, 
Ecuador, Colombia, Guyana, Suriname, French Guiana, Uruguay, and Paraguay, 
and it is also urgent to explore the effects of orchid and ericoid mycorrhizas in plants 
in the context of ecological restoration.
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22.1  Introduction: Soil Biodiversity 
and Ecosystem Functions

Soils represent the largest deposit of organic matter on land, storing ~1500 Gt 
carbon, which is almost as much as the vegetation (~560  Gt) and atmosphere 
(~750 Gt) together (Crowther et al. 2019). Soil microorganisms play crucial roles 
in this storage and in many other ecosystem functions, processes, and services. 
Studying these roles is one of the main objectives of soil ecology. Over the last 
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15 years, soil ecology has significantly expanded to a continental and global scale, 
with a strong focus on broad collaborations and networking among scientists from 
many countries. For example, several studies have targeted the whole soil micro-
bial community (Bahram et al. 2018; Luan et al. 2020), soil bacteria (Delgado-
Baquerizo et al. 2018), earthworms (Phillips et al. 2019), protists (Singer et al. 
2019), fungi (Tedersoo et  al. 2014, 2021, 2022; Egidi et  al. 2019), arbuscular 
mycorrhizal fungi (AMF; Davison et al. 2015; Vasar et al. 2022), and root mycor-
rhizal colonization worldwide (Iversen et al. 2017), among others. Most of these 
macro-ecological-scale studies were summarized and analyzed by Guerra et al. 
(2020), who found that in just about 0.3% of 17,186 sampling plots on the planet, 
both soil biodiversity and the ecosystem functions/services provided by those 
organisms were jointly investigated.

Although studying the causal relationships between biodiversity and ecosystem 
functioning has gained attention in the last three decades, at least regarding soil, this 
issue has been studied since the publication of The Formation of Vegetable Mould 
Through the Action of Worms by Darwin (1881). Despite this, it is surprising how 
little soil biodiversity and ecosystem functions are, in practice, integrated and jointly 
studied (Guerra et al. 2020), although analyses at national scales (in Chile) show a 
more optimistic scenario of integration (Marín et al. 2022). Still, sound inferences 
can be made with the current data, for example, Delgado-Baquerizo et al. (2020) 
show that climate (specifically, aridity and mean annual temperature), plant richness 
and cover, soil pH, and carbon and clay soil content were the main factors determin-
ing global soil biodiversity – within their dataset. In turn, this global biodiversity 
and soil total carbon content explained ecosystem multifunctionality – defined as 
“the simultaneous performance of multiple functions” (Byrnes et al. 2014; Manning 
et al. 2018).

When studying biodiversity and ecosystem functions, one central ecological 
quest is to find causal links between them (Xu et al. 2020). This has been also a 
major research priority recently in soil macro-ecological research (Crowther et al. 
2019; Wagg et al. 2019; Delgado-Baquerizo et al. 2020; Zhou et al. 2020), in par-
ticular asking, does an increase in soil (and/or mycorrhizal) biodiversity at a particu-
lar site results in increased ecosystem functioning? (Marín and van der Heijden 
2020). It is particularly important to experimentally test this question, the global 
patterns mentioned above (i.e., Tedersoo et al. 2014, 2021; Crowther et al. 2019; 
Delgado-Baquerizo et al. 2020) at finer scales, and evaluate temporal changes in 
soil biodiversity and ecosystem function (Guerra et al. 2021). When metrics of func-
tional diversity and community structure of soil microbial communities are added to 
environmental and climatic variables, the explanatory power of models for carbon 
and nitrogen cycling significantly increases (Graham et al. 2016). How to go from 
these correlations to causality? Hall et al. (2018) suggest that microbial processes 
(i.e., nitrogen fixation, denitrification, nitrification) more directly affect a nutrient 
pool or flux (i.e., NO3 or NH4), while the effects of community properties (i.e., 
emergent properties as biomass C: N ratio or community-aggregated traits as func-
tional gene abundance, functional diversity overall) and microbial membership (i.e., 
taxonomic and phylogenetic diversity, community structure, co-occurrence networks) 
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are more indirect, mediated by their concatenate effect on microbial processes. 
There is already some evidence for this approach, as for example, Wagg et al. (2019) 
have shown that microbial network complexity and mycorrhizal abundance were 
the most significant predictors of ecosystem multifunctionality in experimental 
grassland microcosms.

22.1.1  Mycorrhizal Biodiversity: Functions, Types, 
and Their Relationship

The mycorrhizal symbiosis is crucially important in the soil food web, its physical 
structure, and its ecosystem functioning (Soudzilovskaia et  al. 2019; Steidinger 
et  al. 2019; Tedersoo et  al. 2020). These fungi are central to nutrient and water 
uptake, soil structure formation, plant productivity, and alleviating pathogens and 
metal pollution (Tedersoo et  al. 2020), among other functions. Establishing how 
mycorrhizal fungi affect plant growth, nutrition, and defense, has been a central task 
in mycorrhizal ecology since its beginnings. Establishing these relationships on a 
global scale constitutes the next frontier (Soudzilovskaia et al. 2017; Martin et al. 
2018). For example, Davison et al. (2015) and Steidinger et al. (2019) have shown 
that AMF and AMF plants’ biodiversity reach their maximum in the tropics, respec-
tively, while ectomycorrhizal fungi (EMF) and EMF plants have higher biodiversity 
in temperate and boreal ecosystems – although they are not always linearly related 
(Tedersoo et al. 2014, 2022). Few climatic variables related to the decomposition 
process control the transition from EMF- to AMF-dominated forests worldwide 
(Steidinger et al. 2019). Similarly, Barceló et al. (2019), while analyzing 37 climatic 
and edaphic variables, found that temperature-related variables better predicted the 
global distribution of different mycorrhizal hosts: AMF plants are favored by warm 
climates, while EMF plants are favored by colder climates. Lastly, it has been shown 
that AMF generally has very low endemism (i.e., 93% of taxa in multiple conti-
nents; Davison et al. 2015) and that climatic and soil parameter gradients control 
their global community structure more than dispersal limitation and historic factors 
(Vasar et al. 2022).

For several decades now, it has been suggested that to link mycorrhizal biodiver-
sity and ecosystem functioning, newer conceptual and fundamental ecological theo-
ries should be developed, particularly for AMF (Hart and Klironomos 2003). This is 
a necessity as the biology of this group is very particular, from their multiple nuclei 
and particular nuclear and genomic dynamics (Young 2015; Kokkoris et al. 2020) to 
processes and/or management that could be understood in a multilevel selection 
theory framework (Johnson and Gibson 2021). Several research paths of mycorrhi-
zal functioning have been proposed: quantify the role of mycorrhizal networks at 
the individual, population, and community levels (Simard and Durall 2004), clarify 
the functional specificity of different fungal taxa, particularly AMF families and/or 
genera (Marro et  al. 2022), test the effects of different host plants (Hart and 

22 Gaps in South American Mycorrhizal Biodiversity and Ecosystem Function Research



448

Klironomos 2003), and look beyond nutritional functions. Trait-based approaches 
have also gained much attention (van der Heijden and Scheublin 2007; van der 
Heijden et al. 2015; Genre et al. 2020), for example, with some authors proposing 
biological stoichiometry (AMF N: P ratio), as a functional parameter indicative of 
facilitation, and weak and strong competition (Powell and Rillig 2018).

Under controlled experimental conditions (MyDiv experiment), it has been 
shown that the most productive tree communities are those associated solely with 
AMF and not (as the authors hypothesized) those associated with both AMF and 
EMF (Ferlian et al. 2018). In addition to controlled experiments, to understand the 
nature of the mycorrhizal fungal diversity–ecosystem function relationship, it is 
also important to conduct more in situ assessments. A survey by Lekberg and 
Helgason (2018) of articles published in New Phytologist over 30 years shows that 
most mycorrhizal functioning studies are conducted under controlled conditions, 
targeting mostly AMF and EMF (and not the other mycorrhizal types), and with a 
strong focus on nutrient and carbon dynamics (and not other mycorrhizal func-
tions). Thus, significant work on other mycorrhizal types, non-nutritional functions, 
and especially in the field is crucially important to revisit or change old paradigms 
(Albornoz et al. 2021), quantify realized – and not only potential – functions, and 
discover new functions (Lekberg and Helgason 2018). Another unexplored area is 
understanding how the genotypic and species diversity of both the plant hosts and 
their fungal symbionts affects ecosystem functioning (Hazard and Johnson 2018).

22.2  Meta-Analyses of Mycorrhizal Biodiversity 
and Functioning in South America

22.2.1  Literature Search and Coordinates Extraction

In November 2021, a Web of Science search of articles published between 1945 and 
2021 was conducted focusing on four mycorrhizal types (arbuscular, ectomycor-
rhizal, orchidoid, ericoid) and non-mycorrhizal plants according to Moora (2014) 
and on nine mycorrhizal ecosystem functions (plant growth, soil aggregation, N 
uptake, P uptake, chemical defense, allelopathy, other nutrients uptake, soil water 
content, and disease resistance) according to Lekberg and Helgason (2018). Three 
different sets of keywords were used in order to increase the number of publications 
obtained.

For publications centered in mycorrhizal biodiversity (classification, distribu-
tion, taxonomy) in South America, the following keywords were used: “((South 
AND America) OR Colombia OR Venezuela OR Brazil OR Chile OR Paraguay OR 
Guyana OR Argentina OR Bolivia OR Surinam OR Ecuador OR Uruguay OR Peru) 
AND (clasification* OR diversity* OR distribution*) AND ((arbuscular AND 
mycorrhiz*) OR mycorrhiz* OR ectomycorrhiz* OR (orchid AND mycorrhiz*) OR 
(ericoid AND mycorrhiz*) OR (non-mycorrhiz*))).”
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For publications centered in mycorrhizal ecosystem functions in South America, 
the following keywords were used: “((South AND America) OR Colombia OR 
Venezuela OR Brazil OR Chile OR Paraguay OR Guyana OR Argentina OR Bolivia 
OR Surinam OR Ecuador OR Uruguay OR Peru) AND function* AND ((arbuscular 
AND mycorrhiz*) OR mycorrhiz* OR ectomycorrhiz* OR (orchid AND mycor-
rhiz*) OR (ericoid AND mycorrhiz*) OR (non-mycorrhiz*)) AND ((interplant 
AND signal) OR (soil AND aggregation AND hyphae) OR (pathogen AND (resis-
tance OR protection)) OR (allelopath*) OR ((‘water uptake’) OR (‘water transfer’) 
OR (water AND uptake AND transfer)) OR (carbon AND dynamics) OR (nutrients 
AND dynamics) OR (productivity) OR (microbial AND interaction))).”

For publications that integrate both mycorrhizal biodiversity and ecosystem 
functioning in South America, the following keywords were used: “((South AND 
America) OR Colombia OR Venezuela OR Brazil OR Chile OR Paraguay OR 
Guyana OR Argentina OR Bolivia OR Surinam OR Ecuador OR Uruguay OR Peru) 
AND function* AND (clasification* OR diversity* OR distribution*) AND ((arbus-
cular AND mycorrhiz*) OR mycorrhiz* OR ectomycorrhiz* OR (orchid AND 
mycorrhiz*) OR (ericoid AND mycorrhiz*) OR (non-mycorrhiz*) AND ((inter-
plant AND signal) OR (soil AND aggregation AND hyphae) OR (pathogen AND 
(resistance OR protection)) OR (allelopath*) OR ((‘water uptake’) OR (‘water 
transfer’) OR (water AND uptake AND transfer)) OR (carbon AND dynamics) OR 
(nutrients AND dynamics) OR (productivity) OR (microbial AND interaction))).”

Each article was checked individually, discarding those that did not conduct a 
direct analysis of plant roots or mycorrhizal fungi in South America, per the mycor-
rhizal types and functions defined. After compiling the articles, a database including 
coordinates (UTM system), citation, DOI identifier, and mycorrhizal type and eco-
system function investigated was constructed (available upon request to the authors).

22.2.2  Spatial Data Processing and Analyses

Data was georeferenced using Qgis 3.6 (QGIS.org 2021) to create three-point layers 
projected in WGS84. These were used to elaborate four spatial distribution cartog-
raphies, using in three of them the national administrative limits of South America 
(from the site: https://www.efrainmaps.es/) and a fourth shape layer of ecoregions 
extracted from the RESOLVE Ecoregions (Dinerstein et al. 2017) dataset (https://
ecoregions.appspot.com/).

The first three cartographies show distribution patterns according to the adminis-
trative limits of South American countries. The first cartography used three shape 
layers, the first one contained the sampling sites of mycorrhizal biodiversity, the 
second one contained the sampling sites of mycorrhizal ecosystem functions, and 
the third one for sites containing both. For each layer, the parameters of points 
grouping (or cluster) were applied in Qgis 3.6 properties, assigning a tolerance dis-
tance of 50 km. For the second and third cartographies, the same tools and param-
eters were used but applying four mycorrhizal types and non-mycorrhizal plants 
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shape layers (second cartography) and nine mycorrhizal ecosystem functions shape 
layers (third cartography). For the fourth cartography, which used the South 
American biome limits, the same three shape layers from the first cartography were 
used. For each layer, the Qgis 3.6 tool grouping assigns a tolerance distance of 
50 km to cover the concentrations of sites in that range. The color gradient was 
adapted to the design of previous cartographies. All cartographies were projected in 
WGS84/EPSG:4326.

22.3  Main Trends of South American Mycorrhizal 
Biodiversity and Ecosystem Functions Research

A total of 532 Web of Science articles were obtained for the South American conti-
nent, from which 266 investigated mycorrhizal biodiversity, 121 targeted mycor-
rhizal functioning, and 145 investigated both. The first registered article in this 
search is from 1983, and up to the mid-2000s, there were very few studies, mostly 
focusing on mycorrhizal biodiversity (Fig.  22.1). Over the last decade, however, 
there has been a significant jump in South American mycorrhizal research, with 
more and more studies also assessing mycorrhizal ecosystem functions and their 
integration with the biodiversity of the fungal symbionts, reaching up to 50 studies 
in 2019 (Fig. 22.1). This clear transition from more descriptive, baseline studies to 
more function and applications-related studies has been shown before for global 
soil biodiversity (Guerra et al. 2020), Chilean soil biodiversity (Marín et al. 2022), 
and even for South American mycorrhizal fungi (Marín and Bueno 2019). Several 

Fig. 22.1 Number of Web of Science articles (no. of papers) published for the South American 
continent investigating mycorrhizal biodiversity (green), ecosystem functions (yellow), and both 
(blue). The Web of Science search was conducted for the period 1945 to 2021, but the first study 
appears in 1983
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recent insights (Aguilera et al. 2017, 2019, 2022; Becerra et al. 2019) about the dif-
ferent applications of this symbiosis in South America support this view.

From the 532 Web of Science articles obtained, a total of 1528 sampling sites 
were extracted (Fig. 22.2). This means that on average, each study targeted less than 
three sampling sites. The top three countries with the most sampling (almost 80% of 
the total sampling sites) were Brazil (609), Argentina (416), and Chile (190). 
Colombia had 92 sampling sites, while this number was 61 and 55 for Ecuador and 
Venezuela, respectively. Guyana had 33 sampling sites, Bolivia 29, Peru 26, and 
Uruguay 2 sites. Our search for countries like Paraguay and Suriname did not return 
any results, but this is probably an artifact of the search itself; further inquiries in 
both countries should be conducted. It seems that in the countries with more mycor-
rhizal research, the sampling sites are concentrated next to the most developed areas 
with big universities, like in Brazil, with a high concentration in the south from Rio 
de Janeiro to Porto Alegre but also a significant concentration in the northeast, 
around Natal and Recife (Fig. 22.2). This pattern is in accordance with previous 
analyses for Glomeromycota in Brazil (Maia et al. 2020) and South America – espe-
cially the concentration of points in the northeast (Cofré et al. 2019). In Chile, the 

Fig. 22.2 Distribution of sampling sites for mycorrhizal types and ecosystem functions in South 
America. (a) Mycorrhizal types and non-mycorrhizal plants (biodiversity) sampling sites. (b) 
Mycorrhizal ecosystem functions sampling sites. (c) Sampling sites where both mycorrhizal type 
biodiversity and ecosystem functions were conjointly studied. (d) Number of sampling sites per 
mycorrhizal type. (e) Number of sampling sites per mycorrhizal ecosystem function. (f) Percentages 
of sampling sites investigating soil mycorrhizal type biodiversity, ecosystem function, and both. 
The size of the circles is based on a 50 km grid
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most mycorrhizal sampling sites concentrate in the southern-central region (north-
ern Patagonia), in the regions of La Araucanía, Los Ríos, and Los Lagos (Fig. 22.2), 
a pattern previously reported (Marín et al. 2017, 2022) and attributed to an almost 
two-centuries-old mycological and soil ecological research tradition in those regions 
(Marín et al. 2018; Godoy and Marín 2019). Ecuador concentrates most of its sam-
pling sites across the Andes, from Quito to the Peruvian frontier (Fig. 22.2), where 
most universities and croplands are located, while Colombia has its capital (Bogotá) 
and surrounding areas, as the mycorrhizal research epicenter, although significant 
research has also been conducted in the Amazon, near Leticia (Corrales et al. 2018; 
Peña-Venegas and Vasco-Palacios 2019). Another Amazonian region with an impor-
tant number of studies is the Guiana Shield (Fig.  22.2), particularly the frontier 
between Venezuela and Guyana (Smith et  al. 2011, 2013; Henkel et  al. 2012; 
Husbands et al. 2013; Roy et al. 2016), a highly diverse, unexplored, and difficult to 
access area. Most Argentinian mycorrhizal sampling sites were located in the north 
of the country, near a chain of cities starting in Buenos Aires (and through Rosario, 
Córdoba, Mendoza, San Miguel de Tucumán) and ending in Salta and in the limits 
with Bolivia (Fig. 22.2).

In most of the sampling sites (63.09%), mycorrhizal biodiversity was assessed, 
while mycorrhizal functioning was targeted in 12.70% of the sites (Fig. 22.2). In 
24.21% of the sampling sites, both mycorrhizal biodiversity and ecosystem func-
tions were studied together (Fig. 22.2), a surprisingly high percentage compared to 
global-scale analyses on soil biodiversity and ecosystem functioning (where this 
percentage was 0.3%; Guerra et al. 2020) but comparable to similar analyses at a 
national scale (Chile, where this percentage was 18.10%; Marín et al. 2022).

AMF was the mycorrhizal type most investigated (999 plots), followed by EMF 
(345 plots) (Figs. 22.2d and 22.3). Particularly, the distribution of sampling sites for 
both of these types matches the above-described patterns regarding where are 
located the main research centers/universities, historical research hotspots, or capi-
tal cities (Fig. 22.3). The remaining mycorrhizal types and non-mycorrhizal plants 
have been barely studied in the continent, with 103 sampling sites overall. This pat-
tern can be partially explained because of the broad phylogenetic distribution of 
AMF and EMF and the fact that the other two mycorrhizal types are more restricted 
to specific plant families (Ericaceae and Orchidaceae). Furthermore, research into 
ericoid mycorrhizas is relatively new on a global scale, with guides and protocols 
for their isolation and identification being recently developed (Vohník 2020). As 
expected, most studies on mycorrhizal functions focused on plant growth and sur-
prisingly, in soil aggregation (Fig. 22.4).

As the main role of the mycorrhizal symbiosis is directly related to plant growth, 
the result obtained in this regard (Fig. 22.4) was expected and matches previous 
mycorrhizal functioning analyses on a broader scale (Lekberg and Helgason 2018). 
Furthermore, there are databases dedicated to assess the effects of mycorrhizas on 
plant growth, like MycoDB (Chaudhary et al. 2016). There are also some insights 
and an important amount of research regarding the effects of mycorrhizas in soil 
aggregation (Duchicela et  al. 2013), with some emphasis on glomalin research 
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Fig. 22.3 Distribution of the sampling sites for four mycorrhizal types and non-mycorrhizal 
plants in South America. (a) Arbuscular mycorrhizas. (b) Ectomycorrhizas. (c) Orchid mycorrhi-
zas. (d) Ericoid mycorrhizas. (e) Non-mycorrhizal plants. The size of the circles is based on a 
50 km grid

(Cornejo et al. 2008) – which requires significant further development and better 
techniques (Irving et al. 2021).

There were several South American biomes highly understudied, like the desert 
and xeric shrublands of the Atacama Desert; the temperate grasslands, savannas, 
and shrublands of the Patagonian Steppe; the tropical and subtropical grasslands, 
savannas, and shrublands of the Cerrado and Chaco; and the tropical and subtropical 
moist broadleaf forests of the Amazon (Fig. 22.5). This pattern coincides with pre-
vious reports about research gaps in South American mycorrhizas (Cofré et  al. 
2019; Marín and Bueno 2019; Nouhra et al. 2019). As belowground biodiversity 
hotspots usually do not match aboveground hotspots (Cameron et al. 2019), it is 
recommended to conduct more baseline studies especially directed toward places 
with a transition of vegetation (Tedersoo et al. 2014). A recent study by Cazzolla 
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Fig. 22.4 Distribution of the nine mycorrhizal ecosystem functions in South America. (a) Plant 
growth. (b) Soil aggregation. (c) N uptake. (d) P uptake. (e) Chemical defense. (f) Allelopathy. (g) 
Other nutrients uptake. (h) Soil water content. (i) Disease resistance
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Fig. 22.5 Distribution of the sampling sites across South American biomes. (a) Mycorrhizal bio-
diversity sampling sites. (b) Mycorrhizal functions sampling sites. (c) Sampling sites where both 
mycorrhizal biodiversity and functions were jointly investigated
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Gatti et al. (2022) estimates that there are about 9200 tree species in the world, 40% 
of them in South America, especially in the Amazon rainforest. This obviously adds 
to the knowledge gaps in mycorrhizal research in the continent. Science funding 
agencies across the continent should be more open to financing baseline studies 
aimed to discover more species and describe their mycorrhizal types and hopefully 
in more than one country, as in the European system. Broad collaborations and net-
working are novel scientific strategies to solve many gaps at the countries in South 
America in the link between mycorrhizal biodiversity and ecosystems functions, as 
through the South American Mycorrhizal Research Network and the International 
Mycorrhiza Society, which are powerful tools for achieving such goals.

The contribution of mycorrhizal fungi to plant nutrition and growth is the key to 
the formation of the symbiosis but not their only function. For example, on a global 
scale, it was found a significant correlation between the abundance of mycorrhizal 
fungi and P mineralization, soil respiration, available N, and in reducing antibiotic 
resistance genes (Delgado-Baquerizo et al. 2020). Similarly, it is known that decom-
position processes (and therefore saprophytic fungi) and the abundance of AMF and 
EMF are related (Steidinger et al. 2019). It is not clear yet, at a global scale, which 
specific mycorrhizal types are related to which ecosystem functions. Some func-
tions, like soil aggregation, metal alleviation, and pathogen defense, among others, 
have not been targeted at a global or even continental scale. Despite this, many 
regional and local-scale studies have shown different relationships between mycor-
rhizal biodiversity and other ecosystem functions such as biogenic weathering 
(Koele et al. 2014) and different components of the nitrogen cycle (Veresoglou et al. 
2012). Also, in addition to global-scale analyses and studies and more baseline 
explorations, conducting controlled mycorrhization experiments is still crucial to 
understanding and quantifying mycorrhizal functions.

As mentioned earlier, trait-based ecology could make the relationship between 
mycorrhizal types/biodiversity and functions clearer (Wurzburger and Clemmensen 
2018). In this sense, Chen et al. (2018) have suggested using a plethora of mycor-
rhizal traits like hyphal exploration distance, hyphal turnover, and hyphal uptake 
capacity and efficiency as proper functional traits because they heavily influence 
the search for nutrients. Many of these traits, and others like hyphal life span or 
mycelium structure (van der Heijden and Scheublin 2007), have been proven very 
difficult to measure are still not widely used. Several “simpler” methods have been 
suggested to solve these obvious methodological difficulties, AMF N:P stoichiom-
etry (Powell and Rillig 2018) and relating different particular taxa to the acquisition 
or bioavailability of a particular soil nutrient (Treseder et  al. 2018; Marro et  al. 
2022). Several other traits and the feasibility of easily measuring them at broad 
scales should be explored, like functional gene arrangements, enzymes, fatty acids, 
and nutrient consumption profiles, among others. All these increasing efforts show 
that the mycorrhizal scientific community is aware of the central role that trait- 
based ecology will play in understanding the ecosystem functions of this symbiosis.
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22.4  Conclusion and Further Directions

In these analyses, we have shown that mycorrhizal research has many gaps in South 
America. Just a few sites in the south-center of Chile, south and northeast of Brazil, 
around a chain of cities in northern Argentina, around Bogotá (Colombia), south of 
Quito (Ecuador), and in the frontier between Venezuela and Guyana presented a 
good amount of sampling points, mainly targeting AMF and EMF, and plant growth 
and soil aggregation as mycorrhizal types and ecosystem functions, respectively. 
Thus, all other regions, mycorrhizal types, and mycorrhizal functions seem to be 
understudied. Furthermore, much more baseline research of plant and fungal biodi-
versity and on mycorrhizal types and controlled experiments (i.e., response to 
mycorrhization) are very needed. Additionally, we should ask in which of our nine 
South American biomes are mycorrhizas playing more ecosystem roles (i.e., multi-
functionality) and how different are the roles provided by each type. It is also impor-
tant to understand how the relationships (either causal relationships or correlations) 
change in plant communities dominated by different mycorrhizal types, which in 
many South American ecosystems are relatively close (thus, controlling for environ-
mental conditions). Importantly, we should ask how to relate different mycorrhizal 
traits with different ecosystem functions. And finally, it is also important to assess 
the interactions between other soil and rhizosphere organisms and mycorrhizal 
fungi and the effect of such interactions on ecosystem functioning (Marín and van 
der Heijden 2020).
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