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Abstract

1.

Controlling invasive non-native species is one of the main challenges of ecological
restoration, but little is known about what happens below-ground when they
are controlled. A better understanding of what happens below-ground when
restoring plant communities may be useful to better plan restoration. To fulfil this
knowledge gap, we used coastal vegetation on sandy soils in the Brazilian Atlantic
Forest (so-called restinga) as a model to investigate below-ground dynamics in
communities under restoration.

. We evaluated the effect of controlling an invasive pine tree (Pinus elliottii)

on fine root biomass, community root length and ectomycorrhizal rate (% of
ectomycorrhizae—ECMs in root tips) on resting plant communities. We collected
root samples in non-invaded and invaded areas, and areas where pine trees have
been removed as a control method (hereafter managed areas).

The plant community fine root biomass and fine root length density were lower in the
invaded area, and similar in non-invaded and managed areas. Effect sizes showed higher
ECM rate in the invaded and non-invaded areas, and the lowest ECM rate where P.
elliottii was controlled, but no significant differences were observed among those values.
By showing novel data on fine root biomass, length and ECM rate when invasive
non-native trees were controlled, our work fills a knowledge gap exploring how
native plant communities respond to invasion control after 6 years of interventions.
The decrease in fine roots in the invaded area, and the equivalent values in the
managed and non-invaded ones suggest that the removal of pines was sufficient
for the recovery of native vegetation.

Synthesis and applications. Invasive plant species can lead to changes in root
structure and affect ecosystem functioning. Root dynamics play a role in the
process of natural regeneration and restoration when an invasive plant is
controlled, and legacy effects should be considered in planning and monitoring.

KEYWORDS
coastal ecosystem restoration, ectomycorrhizal colonization, Pinus elliottii, restinga, root
biomass, root length, root-root interactions
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1 | INTRODUCTION

Biological invasions are caused by the translocation of species be-
yond their native range due to human activities. After introduction,
non-native species must overcome a survival and a reproduction
barrier to establish self-sustained populations, and a dispersal bar-
rier to spread to new locations, being called invasive (Blackburn
etal., 2011). Biological invasions are one of the main threats to biodi-
versity and human wellbeing worldwide (Roy et al., 2024). The struc-
ture of native plant communities can be affected by the invasion of
non-native species (Vila et al., 2011), causing impacts on the abun-
dance and diversity of native species (Mesacasa et al., 2022; Pysek
& Richardson, 2010). If not controlled, invasive non-native plants
may irreversibly alter the functioning and structure of ecosystems
(Blackwood et al., 2010).

The control of invasive non-native species is one of the biggest chal-
lenges for ecological restoration (Kettenring & Adams, 2011; Weidlich,
Florido, et al., 2020). However, only the above-ground parts of plants
are usually eliminated or removed in restoration initiatives. Possibly,
roots from the non-native plants (and its microbiota) remained in the
soil, leaving a legacy that may have hindered assembly and the resto-
ration itself (Corbin & D'Antonio, 2012; Dickie et al., 2014; Reynolds
et al., 2017). The success of restoration after invasive species control
varies depending on the resident plant community identity, seedbank
composition, presence of other invasive non-native plants, as well as on
how management is done (Machado et al., 2020; Minden et al., 2010;
Mostert et al., 2017). In addition, invasive non-native plants can alter
soil microbiota and nutrients, and these effects can remain even
after these species are removed. This so-called legacy effect (Dickie
etal., 2014; Grove et al., 2017) can hinder the restoration success of na-
tive communities (Funk et al., 2008; Marchante et al., 2009). The lower
the local and landscape resilience is, the greater is the need, intensity
and costs of restoration interventions, as well as the need for active
methods (Brancalion et al., 2019).

Root traits are important as they are drivers of ecosystem pro-
cesses, such as productivity, carbon stocks and nutrient cycling
(Bardgett & Van Der Putten, 2014; de Kroon et al., 2003; Ravenek
et al., 2016), but they are not often measured in comparison with
above-ground parameters (Policelli, Horton, Garcia, et al., 2020).
Roots are also responsible for allocating resources between roots
and shoots (Pérez-Harguindeguy et al., 2013), and if root: shoot
allocation changes, this can impact on competitive and facilitative
interactions and hence the local plant community performance.
Root traits, such as biomass and length, are useful for understand-
ing the changes that occur below-ground (Guo et al., 2007; Lopes
et al., 2010). While root biomass is related to ecosystem productivity
and carbon storage (Ratuchne et al., 2016), root length describes the
ability of roots to exploit a given volume of soil and acquire limited
resources, such as water and nutrients (Hecht et al., 2016; Ravenek
etal., 2016). More specifically, fine roots (@ < 2 mm) are more dynamic
than thicker roots and differ in their ability to acquire nutrients and
water, which is their main function (Jackson et al., 1997; Ratuchne

et al.,, 2016; Selle et al., 2010). Fine roots can acquire resources

directly from the soil or through symbionts (Pérez-Harguindeguy
et al., 2013). In the latter, fine roots are associated with mycorrhizal
fungi (Smith & Read, 2008).

Ectomycorrhizae (ECMs) are associations between plant roots
and fungi, where the hyphae do not pierce the hosts' cell wall but oc-
cupy the intercellular space of the root cortex or the space among the
epidermic cells, forming a so-called Hartig net (Smith & Read, 2008).
ECM fungi capture nutrients and water from the soil for plants and
increase the absorptive area of the root system. In exchange, the
fungus receives carbohydrates from plant photosynthesis (Bardgett
et al., 2014). These positive below-ground interactions play a key role
in plant survival. How control of invasive plants affects root dynam-
ics, including ECM below-ground, has barely been assessed in a resto-
ration context. Thus, evaluating root development patterns and their
symbiotic interactions can help to understand what interactions may
change when an invasive plant is controlled for restoration.

Invasive non-native trees in coastal ecosystems can reduce the
abundance of native species and the functional diversity of local
plant communities (Fischer et al., 2014; Mesacasa et al., 2022). In
coastal ecosystems in southern Brazil, invasive trees of the genus
Pinus (usually from North America) are responsible for changing the
composition of native communities by reducing the availability of
light for native plant communities and producing a thick layer of
litter that decomposes very slowly (Fischer et al., 2014; Mesacasa
et al., 2022). Pine trees are highly invasive in the Atlantic Forest
coastal zones (Bechara et al., 2013) and are known to have symbiotic
ectomycorrhizal fungi (Yokomizo & Rodrigues, 1998) that positively
impact the establishment of these species in the new environment
(Policelli et al., 2018). A recent study suggests that ECM may play
an important role in restoring coastal communities in Neotropical
regions (Weidlich, Mioto, et al., 2020).

Below-ground studies related to biological invasion are scarce,
and even more so in coastal ecosystems. In addition, few studies have
evaluated below-ground attributes in the field of restoration ecology
(Dickie et al., 2014; Mendes et al., 2018). There are even fewer studies
that assess what happens in the soil when invasive non-native spe-
cies are controlled. The success of restoration and control of invasive
non-native species is usually measured by above-ground parameters
(e.g. height and basal area), while below-ground parameters are less
explored (e.g. biomass and of fine root length and microbiota). To fill
these knowledge gaps, we used the Brazilian Atlantic coastal vege-
tation (so-called restinga) as a model to investigate below-ground
dynamics in plant communities under restoration. These areas are
commonly invaded by pine trees, and controlling them is a major com-
ponent of interventions in restinga restoration.

Our goal was to evaluate the effect of controlling an invasive
non-native tree on fine root dynamics of plant communities. We took
advantage of a volunteering programme, where citizens have been
eliminating invasive pine trees in a protected area on a southern Brazil
island (Dechoum et al., 2018), to collect root samples in three different
conditions: non-invaded and invaded areas, and areas where pine trees
had been removed due to the volunteer actions. We used the same

sampling points where above-ground data were collected to evaluate
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the success of the control interventions (Mesacasa et al., 2022). A
better understanding of what happens underground when controlling
invasive species to restore coastal vegetation may be useful to better
plan and implement restoration settings. More specifically, this study
addressed the following question: What is the effect of controlling in-
vasive non-native pine trees (Pinus spp.) on community fine root bio-
mass, length and ECM rate (% of ECM in root tips) of restinga plant
communities? We answered it by collecting root samples in areas not
invaded and invaded, as well as in areas where pine trees have been

controlled for 15years by cutting down the trees at the basal trunk.

2 | METHODS

21 | Studyarea

We collected root samples in a protected area (Dunas da Lagoa da
Concei¢aoMunicipal Natural Park,27°38'11.69” Sand 48°27'45.09" W),
which covers an area of 706.76 hectares in Florianépolis, an island in
Southern Brazil (Figure 1). The climate is humid mesothermal with hot

summers (Alvares etal., 2013) and well-distributed rain, with an annual
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average of 1500 mm and greater precipitation in the summer months
from December to February. The mean annual temperature is 21°C,
with a mean of 25°C in summer and 17°C in winter (INMET, 2021).
The Park protects different vegetation types within the larger rest-
inga (plant coastal communities on sandy soils in Brazil) remnants that
cover fixed, semi-fixed and mobile dunes, in dry, wet and flooded
lowland areas (Guimaraes, 2006). The vegetation is a mosaic of herb,
shrub and tree species (Falkenberg, 1999; Guimaraes, 2006). A volun-
teer programme focused on the control of invasive pine trees has been
developed in the protected area since 2010 (Dechoum et al., 2018),
summing a total area of 211 he of control interventions. Therefore, we
were able to sample roots in a region still invaded by pine trees, an-
other notinvaded, and a third region where pine trees were controlled
by the volunteer programme. Each of these regions had around 0.075
hectares, and we name them as our treatment areas.

Pine trees were first planted in the region in 1963, and after
10years several smaller plantations had already been established
across the island, generating additional sources of seeds that could nat-
urally disperse into the different restinga vegetation types (Dechoum
et al., 2018). Subsequently, new plantings of Pinus spp. took place

for ornamental purposes and for stabilizing dunes in existing private

48°2T0°W
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FIGURE 1 Location of the study area showing (a) the State of Santa Catarina in Southern Brazil; (b) Florianodpolis island, in State of
Santa Catarina; (c) location of the study area in Florianépolis; (d) aerial view of the study area. Orange dot: Location and photograph of the
managed area; yellow dot: Location and photograph of the invaded area; blue dot: Location and photograph of the non-invaded area.
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properties around the area (Dechoum et al., 2018). Pinus elliottii, native
to North America, is the most common pine species planted on the
island and can exceed 20m in height and has a very deep root sys-
tem. Individuals of P. elliottii reach reproductive age in 5years and have
continuous seed rain throughout the year, dispersing approximately
204seeds/m? per year (Bechara et al., 2013). Since 2010, a volunteer
programme started to remove the pines, aiming to restore areas in-
vaded by Pinus spp. by controlling populations (Dechoum et al., 2018).
In 10years, nearly 372,000 individuals of Pinus spp. have been elimi-
nated (by cutting and/or uprooting) in the studied area, favouring the

regeneration of native vegetation (Hérus, 2020).

2.2 | Data collection

Soil samples were collected to obtain roots in three areas (Figure 1),
named hereafter as invaded, managed and non-invaded areas. These
are the same areas sampled by Mesacasa et al. (2022) that reported
the regeneration of native vegetation. The invaded area was mainly
covered by adult pine trees (Pinus elliottii, with an estimated density
of 1920 individuals per hectare), some shrub species and a few herba-
ceous species (Mesacasa et al., 2022). The managed area was located
where pine trees were controlled by cutting or hand pulling in 2013
(Dechoum et al., 2018). When the roots were sampled in this area,
the native vegetation was regenerating, and there were no individu-
als of P. elliottii (Mesacasa et al., 2022). The non-invaded area was a
dry lowland composed exclusively of native herbaceous-shrubby and
woody vegetation and no individuals of P. elliottii, representing what
the other two areas would have been if there had not been an inva-
sion (Mesacasa et al., 2022). All plots were set up in areas between
sand dunes where the original vegetation was characterized by herbs
and shrubs (Guimaraes, 2006) and nutrient-poor soils with high sand
content and organic matter in depressions between dunes (Mesacasa
et al.,, 2022). Data collection took place in October and December
2019 (authorized by FLORAM, Licence number: 058/2019).

Thirty soil cores were collected with 30cm long soil cores (4cm
diameter) in each of the three sampling areas, summing to 90 sam-
ples. In the invaded area, soil samples were collected at a maximum
distance of 1.5m from P. elliottii individuals (minimum height of 5m).
We chose sampling soil 1.5 m away from a pine tree in order to stan-
dardize the sampling method. As the non-invaded area had no pine
tree, we sampled it randomly. Samples in the managed area were
collected in places with evidence of clear-cutting of pine trees (pres-
ence of stumps), at a maximum distance of 1.5m from the base of a

stump and with the presence of shrubby vegetation.

2.3 | Community fine root biomass and length

For large root samples, a subsample was taken by randomly selecting
half of the root material sorted with sieves in trays with water. The
result was extrapolated for the entire sample collected from the field.

Roots were washed, scanned, and the images were saved in high

resolution. Fine roots with diameter <2mm were selected, and roots
with more than 2mm diameter were excluded from this study. The fine
root length density was calculated as the ratio between the total length
of roots obtained from the image analysis (total of 347 images) and the
volume of soil collected. The fine root length density was estimated
with RhizoVision Explorer ver. 2.0.3, using the batch-processing mode
(thresholding level of 200; filter non-root objects larger than 2mm?;
edge smoothing threshold of 1; root pruning threshold of 5, Seethepalli
et al., 2021), which allows the measurement of several root fragments.
To obtain fine root biomass, the roots were dried in an oven at 60°C
for 72h and weighed on an analytical scale. The root biomass was

calculated as the ratio between weight (g) and cylinder volume (cm?®).

2.4 | Ectomycorrhizal colonization rate

To evaluate the effects of controlling an invasive species on ECM
colonization rate, soil cores were collected from January to February
2020, in 10 sampling points per area (30 samples). The samples were
collected and processed in the same local and way as for root bio-
mass and length. For each sample collected, 20 fragments of fine
roots were randomly selected (subsamples), summing 600 frag-
ments. When selecting the roots to count the tips, we selected the
roots that had more than one branch to be able to differentiate
whether these were primary, secondary or tertiary root tips. Thus,
we were sure that we did not quantify the beginning and end points
of the central axis of the root. The ECM rate was calculated using
(Equation 1), where TMT represents the total ectomycorrhizal rate;
PM is the number of root tips with ECMs, and PT is the total number
of root tips (Gehring & Whitham, 1994).

PM

T™MT = 222
PT

2.5 | Statistical analyses

We performed one-way ANOVAs to test the effects of control-
ling an invasive species treatment (fixed factor, three levels) on
total root dry weight and ECM rate. When the null hypothesis
was rejected (p<0.05), the mean values were compared using
the Newman and Keuls test using the R package agricolae (from
de Mendiburu, 2015). The fine root length density data were
compared among the three conditions using the non-parametric
Kruskal-Wallis test, followed by Dunn's tests for pairwise com-
parisons. All data were analysed using the statistical software R
1.2.5033 (R Core Team, 2020).

3 | RESULTS
The plant community fine root biomass and fine root length den-
sity were lower in the invaded area and similar in non-invaded and

managed areas (Figure 2a,b). Fine root biomass in the invaded area
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was 35% lower than in the non-invaded area and 72% lower than
in the managed area. Fine root length density in the invaded area
was 22% lower than in the non-invaded and 26% lower than in the
managed area. Effect sizes showed a higher ECM rate in the invaded
and non-invaded areas and the lowest ECM rate where P. elliottii was
controlled (Figure 2c), but no significant differences were observed

among those values.

4 | DISCUSSION

By showing novel data on fine root biomass, length and ECM rate
when invasive non-native trees were controlled, our work fills a
knowledge gap on below-ground patterns exploring how roots
respond to invasion control after 6years of control interventions.
Overall, our results show that invasive non-native pine trees altered
root patterns, which is an important information for ecological resto-
ration. The decrease in fine roots in the invaded area and the equiva-
lent values in the managed and non-invaded ones suggest that the
removal of pines was an adequate method for allowing the roots of
native vegetation to recover. In addition, the time since invasion can
be related to invasive species density in different stages of the inva-
sion process. A stronger increase in pine density was observed in the
establishment stage when the recruitment of many pine seedlings
and juveniles was followed by mortality due to high density effects
(Mesacasa et al., 2022).

Studies on pine species have shown that the production and
biomass of fine roots are higher in younger than in older individ-
uals, emphasizing that the community age structure is relevant
(Andersen et al., 2008; Chen et al., 2016). The results found in the
invaded area suggest that since the pine trees were adults, they

B Joumalof Appled Ecoogy |
have few fine roots and consequently thicker roots. The observed
decrease in fine roots in the invaded area is possibly due to the
characteristics of adult pines, which typically have fewer fine roots.
In addition, the lower fine root biomass and length in the invaded
area may be explained by the fact that the invasive non-native
tree is dominant, with sparse individuals of native shrub and her-
baceous species in this area (Mesacasa et al., 2022). Thus, there
was less fine root in the invaded area because of the dominance of
pine trees (larger roots) and fewer smaller plants from the native
community. Another factor that may explain the low values of fine
root biomass and length in the invaded area is the presence of a
thick layer of litter on the soil. Litter decomposition of pine species
is slow and not very sensitive to climatic variations (de Carvalho
et al., 2019). This decomposition can release allelopathic exudates
into the soil, which can increase acidity and lead to nutrient defi-
ciency, affecting root growth and seed germination of other plants
(Lopes et al., 2010; Sartor et al., 2009).

The managed and non-invaded areas showed higher fine root
biomass and length when compared to the invaded area. Root
biomass and root length indicate soil exploitation to access water
and the ability to compete for soil nutrients (Pérez-Harguindeguy
et al., 2013). For example, to avoid competition for resources in poor
soils, plants can increase the surface area and length of fine roots (Li
et al., 2017) or increase the allocation of biomass to below-ground
organs (Liao et al., 2019). The increase in fine root biomass can often
be related to scarcity of soil resources (Weemstra et al., 2017)—
for instance, when available nutrients are low, fine root biomass is
high. Thus, high root biomass allocation and fine root density sug-
gest a competitive advantage (de Kroon et al., 2012). Allocation of
carbon to fine roots can also increase in soils that lack in humidity,

water and nutrients (Bloom et al., 1985), causing plants to invest
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more resources to access and acquire water from the soil (Antunes
et al.,, 2019). Considering that restinga soils are predominantly sandy,
poor in nutrients and organic matter, rich in salinity and with great
permeability to water (Bresolin, 1979; Falkenberg, 1999), a large in-
vestment in fine roots can be expected by the native species as a
way of adapting to harsh conditions. Thus, a reduction in investment
in fine roots may lead to a reduction in fitness and ability to obtain
resources for native plants, and this may be one of the mechanisms
by which the pines suppress native vegetation.

The higher values on fine root length and biomass in the man-
aged and non-invaded areas (as opposed to the invaded area) sug-
gest that the removal of the invasive species increased the fine root
biomass and length of the regenerating native plant community.
Our findings can be supported by the fact that roots rely on inter-
actions between biotic and abiotic factors in the soil (McMichael &
Quisenberry, 1993; Weemstra et al., 2016) and respond to changes
in the environment (Bardgett et al., 2014). Thus, factors such as
moisture, nutrient supply and soil properties can change their den-
sity and, consequently, the adaptation of the plant community at the
site (Sainju & Good, 1993).

The fact that we found similar ECM rates between the three
areas may indicate that the ECM fungi associated with the inva-
sive non-native tree are able to successfully colonize the areas to
where they were introduced. We observed that the roots collected
in the invaded area presented many ECM with a morphology typical
of the association of Pinus spp. with Suillus, which are easily recog-
nized by its short and clustered branches of root tips (Yokomizo &
Rodrigues, 1998). In a study conducted in South America, pine trees
established novel interactions with native ECM, adopting different
strategies to keep symbiotic interactions in the introduced range
(VIk et al., 2020). Moeller et al. (2015) observed that the invasive
tree Pseudotsuga menziesii (Pinaceae) in New Zealand can associate
with several native fungi. Schulz et al. (2012) found that the total
ECM colonization rate in plants varied according to the heteroge-
neity of fungal partners colonizing them and the type of substrate
where the plants were growing, which may help to explain the high
ECM rate that we observed in the invaded area.

The non-invaded area was predominantly composed of
herbaceous-shrubby vegetation and represents what the areas
would be without the invasion by P. elliottii (Mesacasa et al., 2022).
Thus, the absence of the invasive non-native tree allows us to infer
that the ECM collected is commonly associated with the native
plants growing there (or at least with some of them). Guapira op-
posita (Nyctaginaceae) is a common shrub found in the non-invaded
area, which is considered a nurse plant as it facilitates the growth of
other plant species in the restinga (Dalotto et al., 2018), and is, there-
fore, important in the processes of ecological succession in rest-
inga plant communities. Several ECM fungi associated with Guapira
opposita have been identified in the restinga (Furtado et al., 2022;
Genebra, 2021; Roy et al,, 2017; Slodkowski, 2020; Vanegas-Leodn
et al., 2019). Since invasive trees can establish and grow in places
that have not yet been invaded, where native tree species pre-

dominate (Policelli, Horton, Garcia, et al., 2020), we highlight the

importance of controlling these invaders so that they do not spread
to natural environments.

Our study brings novel results, suggesting that the native
vegetation is recovering well and that the potential legacy effect
of pine tree invasion did not compromise the recovery of below-
ground structure of the native vegetation. Further studies that
endeavour to partition which portion of the roots belong to the
pine and which to the native species would help confirm this find-
ing. Our results allowed us to answer our research question by
showing that restoration intervention (invasive tree elimination)
affected below-ground dynamics. We conclude that controlling
invasive non-native pine trees affected community fine root bio-
mass and length of resting plant communities. The similar ECM
rates found between the three areas suggest that the ECM fungi
associated with the pine trees can successfully colonize the areas

invaded by this non-native species.
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